a2 United States Patent

US009253283B2

(10) Patent No.: US 9,253,283 B2

Dunn et al. 45) Date of Patent: Feb. 2, 2016
(54) SYSTEMS AND METHODS FOR GHOSTING (56) References Cited
AND PROVIDING PROXIES IN A NETWORK
FEED U.S. PATENT DOCUMENTS
(71) Applicant: salesforce.com, inc., San Francisco, CA g:gg;:gg ﬁ lé;}ggg g?ffwm et al.
(as) 5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
(72) Inventors: Zachary J. Dunn, San Francisco, CA g:;%:gég ﬁ 18;}332 (Sjcalrll‘;]f()rf;ta?'
(US); Joseph M. Olsen, Mountain 5821937 A 10/1998 Tonelli et al.
House, CA (US) 5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2/1999 Limet al.
(73) Assignee: salesforce.com, inc., San Francisco, CA 5,918,159 A 6/1999 Fomukong et al.
us) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 “Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on
U.S.C. 154(b) by 219 days. Feb. 21, 2012 from Internet at http:/www.googleplusers.com/
google-ripples.html], 3 pages.
(21) Appl. No.: 14/024,468 . . .
Primary Examiner — Jonathan Bui
(22) Filed: Sep. 11,2013 (74) Attorney, Agent, or Firm — Weaver Austin Villeneuve
& Sampson LLP
(65) Prior Publication Data (57) ABSTRACT
US 2014/0082078 Al Mar. 20, 2014 Disclosed are methods, apparatus, systems, and computer
readable storage media for maintaining anonymity in an
online social network. In some implementations, a user can be
Related U.S. Application Data designated a ghost user with respect to an entity in the online
(60) Provisional application No. 61/701,485, filed on Sep. social network. One or more invisibility levels can be deter-
14, 2012. mined for the ghost user. Data indicating content to display in
accordance with one or more invisibility levels can be gener-
(51) Int.CL ated and provided to a display device configured to display a
GO6F 15/16 (2006.01) presentation of the social network feed associated with the
T04L 29/08 (2006.01) entity in a user interface associated with a second user. Also
H04L 29/06 (2006.01) disclosed are methods, apparatus, systems, and computer
(52) U.S.CL readable storage media for designating a proxy in an online
CPC ... HO4L 67/306 (2013.01); HO4L 63/0407 social network. In some implementations, a first user can be
(2013.01) designated as a proxy user of a second user in an online social
(58) Field of Classification Search network with respect to one or more entities within the online

CPC ... G06Q 50/01; HO4L 63/0407; HO4L 67/306
See application file for complete search history.

social network.

12 Claims, 27 Drawing Sheets

1500
—~

anonymity in an enline social network

(Cumputer implemented method for mamtaimng)

(—»1504

Designate, at a computing device, a first user as a ghost
user with respect o an entity in the online social network

1508
—

Provide the ghost user access to a social network feed
associated with the entity

1812

Determine one or more invisibility levels for the
ghost user

1518
—

accordance with one or more invisibility levels

‘ Generate data indicating content to be displayed in l

1520
-

Provide the generated data to a display device configured
ta display a first presentation of the social network feed
associated with the entity in a user interface associated
with a second user, the first presentation concealing one
or more of the identity of the ghost user and feed content

associated with the ghost user according to a determined

invisibility tevel

US 9,253,283 B2

Page 2
(56) References Cited 7,508,789 B2 3/2009 Chan
7,599,935 B2* 10/2009 La Rotonda et al.
U.S. PATENT DOCUMENTS 7,603,331 B2 10/2009 Tuzhilin et al.
7,603,483 B2 10/2009 Psounis et al.
5,963,953 A 10/1999 Cram et al. 7,620,655 B2 11/2009 Larsson et al.
5,983,227 A 11/1999 Nazem et al. 7,644,122 B2 1/2010 Weyer et al.
6,002,083 A 7/2000 Brodersen et al. 7,668,861 B2 2/2010 Steven
6,161,149 A 12/2000 Achacoso et al. 7,698,160 B2 4/2010 Beaven et al.
6,169,534 Bl 1/2001 Raffel et al. 7,730,478 B2 6/2010 Weissman
6,178,425 Bl 1/2001 Brodersen et al. 7,747,648 Bl 6/2010 Kraft et al.
6,189,011 Bl 2/2001 Lim et al. 7,779,039 B2 8/2010 Weissman et al.
6,216,133 Bl 4/2001 Masthoff 7,779,475 B2 8/2010 Jakobson et al.
6,216,135 Bl 4/2001 Brodersen et al. 7,827,208 B2 11/2010 Bosworth et al.
6,233,617 Bl 5/2001 Rothwein et al. 7,853,881 Bl 12/2010 Assal etal.
6,236,978 Bl 5/2001 Tuzhilin 7,945,653 B2 5/2011 Zuckerberg et al.
6,266,669 Bl 7/2001 Brodersen et al. 8,005,896 B2 82011 Cheah
6.288.717 Bl 9/2001 Dunkle 8,014,943 B2 9/2011 Jakobson
6’295’530 Bl 9/2001 Ritchie et al. 8,015,495 B2 9/2011 Achacoso et al.
6324.568 Bl 11/2001 Diec et al. 8,032,207 B2 102011 Jakobson
6,324,693 Bl 11/2001 Brodersen et al. 8,073,850 Bl ~ 12/2011 Hubbard et al.
6,336,137 Bl 1/2002 Lee et al. 8,082,301 B2 12/2011 Ahlgren et al.
D454,139 S 3/2002 Feldcamp et al. 8,095,413 Bl 1/2012 Beaven
6,367,077 Bl 4/2002 Brodersen et al. 8,095,531 B2 1/2012 Weissman et al.
6,393,605 Bl 5/2002 Loomans 8,095,594 B2 1/2012 Beaven et al.
6,405,220 Bl 6/2002 Brodersen et al. 8,103,611 B2 1/2012 Tuzhilin et al.
6,411,949 Bl 6/2002 Schaffer 8,150,913 B2 4/2012 Cheah
6,434,550 Bl 8/2002 Warner et al. 8,209,308 B2 6/2012 Rueben et al.
6,446,089 Bl 9/2002 Brodersen et al. 8,209,333 B2 6/2012 Hubbard et al.
6,535,909 Bl 3/2003 Rust 8,275,836 B2 9/2012 Beaven et al.
6,549,908 Bl 4/2003 Loomans 8,457,545 B2 6/2013 Chan
6,553,563 B2 4/2003 Ambrose et al. 8,484,111 B2 7/2013 Frankland et al.
6,560,461 Bl 5/2003 Fomukong et al. 8,490,025 B2 7/2013 Jakobson et al.
6,574,635 B2 6/2003 Stauber et al. 8,504,945 B2 82013 Jakobson et al.
6,577,726 Bl 6/2003 Huang et al. 8,510,045 B2 82013 Rueben et al.
6,601,087 Bl 7/2003 Zhu et al. 8,510,664 B2 8/2013 Rueben et al.
6,604,117 B2 8/2003 Lim et al. 8,566,301 B2 10/2013 Rueben et al.
6604,128 B2 8/2003 Diec et al. 8,646,103 B2 2/2014 Jakobson et al.
6.609.150 B2 82003 Lee ot al. 8,886,766 B2 11/2014 Dunn etal.
6,621,834 Bl 9/2003 Scherpbier et al. 8,984,051 B2 3/2015 Olsen etal.
6,654,032 Bl 11/2003 Zhu et al. 9,058,363 B2 6/2015 Dunn et al.
6,665,648 B2 12/2003 Brodersen et al. 9,094,359 B2 7/2015 Olsen et al.
6,665,655 Bl 12/2003 Warner et al. 9,123,028 B2~ 9/2015 Olsen
6,684,438 B2 2/2004 Brodersen et al. 2001/0044791 Al 112001 Richter et al.
6.711.565 Bl 3/2004 Subramaniam et al. 2002/0072951 Al 6/2002 Leeetal.
6724399 Bl 4/2004 Katchour et al, 2002/0082892 Al 6/2002 Raffel et al.
6,728:702 Bl 4/2004 Subramaniam et al. 2002/0129352 Al 9/2002 Brodersen et al.
6.728.960 Bl 4/2004 T.oomans et al. 2002/0140731 Al 10/2002 Subramaniam et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2002/0143997 A1 10/2002 Huang et al.
6,732,100 Bl 5/2004 Brodersen et al. 2002/0162090 Al 10/2002 Parnell et al.
6,732,111 B2 5/2004 Brodersen et al. 2002/0165742 Al 11/2002 Robins
6,754,681 B2 6/2004 Brodersen et al. 2003/0004971 Al 1/2003 Gong
6.763.351 Bl 7/2004 Subramaniam et al. 2003/0018705 Al 1/2003 Chen et al.
6.763.501 Bl 7/2004 Zhu et al. 2003/0018830 Al 1/2003 Chen et al.
6.768.904 B2 72004 Kim 2003/0066031 Al 4/2003 Laane et al.
6:772’229 Bl 8/2004 Achacoso et al. 2003/0066032 Al 4/2003 Ramachandran et al.
6782’383 B2 8/2004 Subramaniam et al. 2003/0069936 Al 4/2003 Warner et al.
6.804330 Bl 10/2004 Jones of al. 2003/0070000 Al 4/2003 Coker et al.
6.826.565 B2 11/2004 Ritchic cf al. 2003/0070004 Al 4/2003 Mukundan et al.
6,826,582 Bl 11/2004 Chatterjee et al. 2003/0070005 Al 4/2003 Mukundan et al.
6.826.745 B2 11/2004 Coker 2003/0074418 Al 4/2003 Coker et al.
6.829.655 Bl 12/2004 Huang et al. 2003/0120675 Al 6/2003 Stauber et al.
6,842,748 Bl 1/2005 Warner et al. 2003/0151633 Al 8/2003 George et al.
6,850,895 B2 2/2005 Brodersen et al. 2003/0159136 Al 82003 Huang et al.
6.850.949 B2 2/2005 Warner et al. 2003/0187921 Al 10/2003 Diec et al.
6.907.566 Bl 6/2005 McElfresh et al. 2003/0189600 Al 10/2003 Gune et al.
7.062.502 Bl 6/2006 Kesler 2003/0204427 Al 10/2003 Gune et al.
7,069:231 Bl 6/2006 Cinarkaya et al. 2003/0206192 Al 11/2003 Chen et al.
7,069,497 Bl 6/2006 Desai 2003/0225730 Al 12/2003 Warner et al.
7,100,111 B2 8/2006 MCcElfresh et al. 2004/0001092 Al 1/2004 Rothwein et al.
7,181,758 Bl 2/2007 Chan 2004/0010489 Al 1/2004 Rio et al.
7,269,590 B2 9/2007 Hull et al. 2004/0015981 Al 1/2004 Coker et al.
7,289,976 B2 10/2007 Kihneman et al. 2004/0027388 Al 2/2004 Bergetal.
7,340,411 B2 3/2008 Cook 2004/0128001 Al 7/2004 Levin et al.
7,356,482 B2 4/2008 Frankland et al. 2004/0186860 Al 9/2004 Leeetal.
7,373,599 B2 5/2008 McElfresh et al. 2004/0193510 A1 9/2004 Catahan et al.
7,401,094 Bl 7/2008 Kesler 2004/0199489 Al 10/2004 Barnes-Leon et al.
7,406,501 B2 7/2008 Szeto et al. 2004/0199536 A1 10/2004 Barnes Leon et al.
7,412,455 B2 8/2008 Dillon 2004/0199543 Al 10/2004 Braud et al.
7,454,509 B2 11/2008 Boulter et al. 2004/0249854 Al 12/2004 Barnes-Leon et al.

US 9,253,283 B2

Page 3
(56) References Cited 2013/0024511 Al 1/2013 Dunn et al.
2013/0024788 Al 1/2013 Olsen et al.
U.S. PATENT DOCUMENTS 2013/0054706 A1* 2/2013 Grahametal. 709/206
2013/0060859 Al 3/2013 Olsen et al.
2004/0260534 Al 12/2004 Pak et al. 2013/0061156 Al 3/2013 Olsen et al.
2004/0260659 Al 12/2004 Chan et al. 2013/0091229 Al 4/2013 Dunn et al.
2004/0268299 Al 12/2004 Lei et al. 2013/0198652 Al 82013 Dunn etal.
2005/0050555 Al 3/2005 Exley etal. 2013/0205215 Al 82013 Dunnetal.
2005/0091098 Al 4/2005 Brodersen et al. 2013/0205400 A1* 82013 Yerli woovciiiiinniiiiiinn 726/26
2008/0040673 A1* 2/2008 Zuckerberg etal. ... 715/745 2013/0212497 Al 82013 Zelenko et al.
2008/0249972 Al 10/2008 Dillon 2013/0218948 Al 82013 Jakobson
2009/0063415 Al 3/2009 Chatfield et al. 2013/0218949 Al 8/2013 Jakobson
2009/0100342 Al 4/2009 Jakobson 2013/0218966 Al 82013 Jakobson
2009/0177744 Al 7/2009 Marlow et al. 2013/0232156 Al 9/2013 Dunn et al.
2011/0151890 Al* 6/2011 Plattetal. ccoooovn....... 455/456.1 2013/0247216 Al 9/2013 Cinarkaya et al.
2011/0218958 Al 9/2011 Warshavsky et al. 2013/0304830 Al 112013 Olsen etal.
2011/0247051 Al 10/2011 Bulumulla et al. 2014/0019187 Al 1/2014 Olsen etal.
2011/0276396 Al* 11/2011 Rathodccoooorrmnve.... 705/14.49 2014/0040374 Al 2/2014 Olsen et al.
2012/0042218 Al 2/2012 Cinarkaya et al. %8};‘;8382;% Al 1%8}‘5‘ ﬁlc(k%bsonft ?L
obson €t al.
58}%8553?2; 2} gggﬁ JDa‘f:(‘)Il‘):(fnalét al 2015/0007050 Al 1/2015 Jakobson et al.
5012/0090407 AL 11901> Hubbard of al. 2015/0095162 Al 4/2015 Jakobson et al.
: 2015/0142596 Al 5/2015 Jakobson et al.
2012/0331053 Al 12/2012 Dunn 2015/0172563 Al 6/2015 Jakobson et al.
2013/0021370 A1 1/2013 Dunn et al.
2013/0024454 Al 1/2013 Dunn * cited by examiner

US 9,253,283 B2

U.S. Patent Feb. 2, 2016 Sheet 1 of 27
/—Q 2 /‘“C 24 26
N N /
Tenant System Program
Data Data Code
Storage Storage
17
N— N f / 28
[1 8 | Processor
System Process Space
Application 2
Platform 0 \
Network System 16
Interface

Environment
10

User
System
12

FIGURE 1A

User
System
12

U.S. Patent Feb. 2, 2016

— !
\\—‘

Sheet 2 of 27

22 _
— 123

24 |

112

Tenant Space

T 114

Tenant Data

25

Application MetaData {~ [T— 116

Tenant DB

Application
Setup
Mechanism 38

Save

Tenant Management

System
Process \
102

Process
110

Routines 36

Tenant

PL/SOQL

Process

11| Tenant 2 Tenant N
Process Process

34

N 104————/ 28

Appl.
Server

Environment
10

12~

Appl.

100N
Server —

12

Memory
System 12B

Processor
System 12A
Input
System 12C

Output
System 12D

12

FIGURE 1B

US 9,253,283 B2

16

U.S. Patent

Feb. 2, 2016 Sheet 3 of 27 US 9,253,283 B2
< 216 /* Core \ 228
- switch 1 % |- 8 o5
(| , 256
S | Switch3 -
B = atabase
Active \" 7 Load P : ™ Storage
e Firewall Balancer Active DB Switch
212" Edge Core 224 Firewall (10f2)
; Switch 4\— 236
Router 2 Switch 2
I 244 N 200
Pod
FIGURE 2A
236
Q 244
Switch 4 Pod
. [/— 264 N
; 288
Q, 268 <
=
Content §,/ N 284 o
Baich |, ‘1 Y, j— 282 Py,
s 280 7 Aw
Servers - S servers
Content ‘N r(— 286 % | &y
Search =/ Ny Batch
Servers Query ACS Servers
Servers Servers \
File Force
Database 290
Instance / Servers \ \
292 -
292 /_ 5 Datab
/ : atabase
o s, _ 204 Instance
FS Indexers
[y
228 \' Y .
\/ 7,296 298 (.
S s W
‘lgi/ ‘§3 / e
Load NFS Fileforce
Balancer

FIGURE 2B Svage

U.S. Patent

310 —| Database system receives a

320 —— Database system writes new

340
T Add feed update to feed of first

350
Y Identify followers of first record

Feb. 2, 2016 Sheet 4 of 27

request to update a first record

Y

data to first record

Y

Generate feed update

|

record

l

|

360

Add the feed update to a news feed
of each follower

l

Follower accesses his/her news feed
and sees the update

FIGURE 3

US 9,253,283 B2

v 300

US 9,253,283 B2

Sheet 5 of 27

Feb. 2, 2016

U.S. Patent

S5 vy 34NOI4

(4amoj|of)
b Jasn puooag 9
10091 1osn
U,w "y puZ 4O POS)
10} 1s9nbay 00V
10} 1senbey
9% PP Sev \
weishs aseqele(y 9|110id
aseqgeieq allj0id 1BMOJ|04
7y
g
>T% 5 ajepdn
asegeleq Pod} MON
ajepdn
pJOOOY
y poa} MaN
acv Liy
plooay z (sMossaooid | ’ SO¥
BlEep MON «on e) Jasn 18414
\ X pi008y
0} ajepd
0Zh } 8jepan

U.S. Patent Feb. 2, 2016 Sheet 6 of 27 US 9,253,283 B2

500
510 Database system identifies an '/‘
N action of a first user that triggers
an event

e

520 ——| Does the event qualify for a
feed update?

l Yes

Generate feed update about the
action

——»| Stop

530 —

Y

540 — Add feed update to feed of first
user

Y

550 — |dentify followers of first user

A4

Add the feed update to a news
feed of each follower

|

570 —-| Follower accesses the news
feed and sees the feed update

560 ——

FIGURE 5

U.S. Patent Feb. 2, 2016 Sheet 7 of 27

610 —] Database system receives a
message associated with a user

l

620 —| Add message to a feed (e.g. as
a profile feed) of the user

\ 4

630
\ Database system identifies
followers of user

l

640 —_[Add the message to a news feed
of each follower

l

650 —~ Follower accesses a news feed
and sees the message

\ 4

660] Database system receives a
comment about the message

l

670 — Add comment to the news feed
of each follower

FIGURE 6

US 9,253,283 B2

600
v

US 9,253,283 B2

Sheet 8 of 27

Feb. 2, 2016

U.S. Patent

4 JdNOld

-dopysep Aw Buges naqe Bupuig

‘sigyndwiod Auewi 00} sARY |
swepe wes FH

iAepo; ooglau mau Aw Jo9
sZiugsew uue §R

HOOG)AU MBU B} 885 O} JIBM
juen Buudg sy sieap atuosame
Y Ino Bupuioo st [ag plesy |
swepe wes §3

‘dnolb e se
mo||o4 03 sBuui o edosd pui4

[ostliiv @as (7) Buimoijod

_ JUBWWIOD € 81N _

Wd 82t ‘Aepieisas
g=lile) >_:O SUL 5.1 "ONAS Jepun laueiiil Si UO St ajlf Y| Janeg ||ig

Wd 81 7 Aepreisai
‘BunoNIey Ut BOISSS 0} }ie} ‘punole yse ||| dioop Arew

Wd 8% Aepioisa 1A "8DuIS souwn
MO} B PSlPOD. LD SBY §] LIUBILOD Ul ¥0RyD NOA PIp ‘aIns Joug UOXeS SSWE

Wd 81:% ‘Aepieisa
U sey {jig Uiy} | uosuyop ey

@len) e

18 e1e84)

M weel A m@

\ juswioy wdiig m
0cs $80, DNAS WOy 109p 8jouAey 8y} aaeY BUOAUE S80(SHURH Ja3ted)

fomm

'SISCUIBL WRS) B0IADU S0 8L}
1o} ejqepeas Aaa s)1 ‘yidep jo ug e aunb o of jou saop 3 ybnouyye
"$$8UISNG JNO JO sjusauedod BulAuBpun syl SSUIRN0 JUBWNOOP SiY]

2002 62 soqApse:
548

(Leld) pROUMOG MBIA sxooqaN — sjubisuy aapnaduiod

JUBTIWoY wdy 1:¢ $MO0qIaN ~ spybisu) aajnadwor) juswnoop ayy pajsod sey Janeg [lig %

ﬁ sanunuoddo @w
m sslid Du

A spslao £y

JepeyD yorees i

- 0Ll §00Z '¥Z AInp Aepoy

sud [wun g uoeny

[osil v eeg (7) ssequisp

O sbumes sequisw
@ sbumpes dnosb

_ £ uo Bupuiom nok ase «mc>>~

"AjBANOBYS 210w ZAX IsuieBe 91aduico O} SN MOJE {jiM 1Y) UCHBWIOUL BJeys 0} aoeld v

dnorn aannedwo) ZAX

Sd3.1NdNOD

spieoquseg spodsy seplunuoddQ sioEuUOD mE:ooo<E Boid AN SUWIOH

A

pnolg sajes }

wnofo1 diey dndg sule oned

90.10/Safes

~

US 9,253,283 B2

Sheet 9 of 27

Feb. 2, 2016

U.S. Patent

8 F4NOI4

EREET

Wd 82 ‘Aepiaysag
‘ABeieas ssnoslp 0} JUBM NOA J Bull B Sl SAID) IEDA ISE] JUNCDOE SIL) UO POIoM | Iodled Aa seneg g | %)

UBWWGD widLiig ¢80,

ONAS WS} J0ap S10UASY BI) BAEY SUOAUR SB0(SLEH JONIEY

TUSWOD tidy | g ‘AepIoIsas ﬂ

WN020B ZAXH# S uo aji| Aseneq dojde] punose uochnadwiod ybno; swos Bumeb 184 UseN 213 ‘b

6002 ‘cZ Aing Aepsoisop

WUBWIWOD B Bl _

Nd 8521 Aepugise A abusyieyo e oq O3 HuloB s .au0 sy 'seA ddey axep r@\

TUSTITY We L/ ‘AepIaiseA Mz -AlunpoddO# uo 1onpoid Z pnojD 221AI8S N0 8i0|dxa 0f SJUEM ZAX Janeg [Iig w

WY 8111 Aepieise A Buyssuisiu] WWH M estg w

JUSWLHOD) wiey)., ‘Aepisise A

MEE L-AunuoddOg uo jeacsdde Jop peRiugns ueRq Jsnf sey JUNoosip e S1aBPIM 0001 — 99U} ‘ZAX %

‘vz Kgnp Kepo,
Korm 6002 ‘vZ Ajnr Aepo)

a3l qur &> uoeny

£Uo Buppiom noA ase wmc>>u

(1) 3oneud 53 <

ﬁ uig apAoey Du
M sepuees] w

S19BpI 000'TE - oWy &

s1ebpi
000¢ - woveoIC)ssies 6

woaedsopssies A

awoy £

Hoiuag oley @

{51838 95UBAPY
umo § swey oy ywr] I

MezL-Ayunpoddo g & s

spieoquyseg suodoy BEEMUIDHGCIM sjorjuo) sjunosdy sdnoly 3jHoId AN eWOH

pRojD saeg |

moboy diey dnisg

SR Jovted

U.S. Patent Feb. 2, 2016 Sheet 10 of 27 US 9,253,283 B2
Event Object Created by Event Comment Time/
ID 911 ID 912 ID 913 ID 931 932 Date 933
[" 1 0'21 '201 O
E1 0615 Us E37 532 PM
E2 0489 U101 E37 e 9-17-2010

Event History Table 910

New
value 923

Old value
922

Event
ID 921

Comment Table 930

E37 300 400

E37 4.23 4.10

: Field Change Table
920

User ID
941

U819

Object
ID 942

0615

U819
U719

0489

0615

User Subscription
Table 940

Event Post Text Time/
ID 951 950 Date 953
T T10-11-2010
E69 4:12 PM
E90 8-12-2010
) Post Table 950
User Event
D961 1D 962
us19 E37
us19 E90
U719 E37

News Feed Table
960

FIGURE 9A

U.S. Patent Feb. 2, 2016 Sheet 11 of 27 US 9,253,283 B2

/’— 900

901 Receive one or more properties of
Y an object stored in the database
system

902 Receive one or more criteria about
" which users are to automatically
follow the object

903 Determine whether the one or
\ more properties of the object
satisfy the one or more criteria for
a first user

|

904 ~ If the criteria are satisfied, the
object is associated with the first
user

FIGURE 9B

U.S. Patent

1020 —

1030
N

Feb. 2, 2016

Sheet 12 of 27

Receive data indicative of an
event

Determine whether the event is
being tracked for inclusion into
feed tables

l

Write event to an event history

table

l

1040
N

Update field
change table

l

US 9,253,283 B2

'/-'1000

Update post
table

/ 1050

1

Receive a comment for an event
and add to a comment table

FIGURE 10

U.S. Patent Feb. 2, 2016 Sheet 13 of 27 US 9,253,283 B2

1100
v~

1110 —| Receive a query for an events
history table

1120] Check to determine if the user
can view the record feed

|

1130
\ Check field level security table to
determine whether the user can
see particular fields

1140
\ Display feed items to which the
user has access

FIGURE 11

U.S. Patent Feb. 2, 2016 Sheet 14 of 27

1210 Receive a query from a second
Y user for an events history table
to see a first user’s profile feed

A 4
Perform security check whether
1220 — second user can see first user’s
profile feed

I

Perform a security
1230 — check on specific feed
items

!

Retrieve a predetermined
1231 —~ number of matching entries from
the event history table

Y

1232 Organize the record identifiers by type and
™ check whether the second can see the
record types

Y

1233 ~ If can see type, then proceed to check
access for specific records

Y

1234 —| Use field sharing rules to determine if
certain fields are not viewable

Y

1235 — Repeat steps 1231-1234 until a
stopping criteria is reached

FIGURE 12

US 9,253,283 B2

o 1200

U.S. Patent Feb. 2, 2016 Sheet 15 of 27 US 9,253,283 B2

1300
vy

1310 — Receive data indicative of an
event

|

1320 ——u_| Determine objects
associated with the event

l

1330] Determine users Iollowing the
even

|

Write followers of the event along
with an event identifier to a news
feed table

|

1350 ———_| Receive a request for a
news feed from a user

|

Access news feed table and other
tables to generate feed items for
display

1340 —

1360 —

FIGURE 13

U.S. Patent Feb. 2, 2016 Sheet 16 of 27 US 9,253,283 B2

1400
vy~

1410 Receive one or more criteria
) specifying which feed items are to
be displayed to a first user

h 4

1420 — Identify feed items of one or more
selected objects that match the criteria

Display the feed items that
1430 - ~ maich the criteria to the first
user in the custom feed

FIGURE 14

U.S. Patent Feb. 2, 2016 Sheet 17 of 27 US 9,253,283 B2

(——1500
Computer implemented method for maintaining
anonymity in an online social network

l (’—1504

Designate, at a computing device, a first user as a ghost
user with respect to an entity in the online social network

l f»—1508

Provide the ghost user access to a social network feed
associated with the entity

l (»-1512

Determine one or more invisibility levels for the
ghost user

l (~—1516

Generate data indicating content to be displayed in
accordance with one or more invisibility levels

l (»—1520

Provide the generated data to a display device configured
to display a first presentation of the social network feed
associated with the entity in a user interface associated

with a second user, the first presentation concealing one

or more of the identity of the ghost user and feed content
associated with the ghost user according to a determined
invisibility level

FIGURE 15

U.S. Patent Feb. 2, 2016 Sheet 18 of 27 US 9,253,283 B2

Computer implemented method
for maintaining anonymity in an 1600
online social network

—1604

Receive, at a computing device, a
request to follow an entity in the
online social network as a ghost user (1620

Provide a selection for the ghost
user to publish content to a social
\ 4 [1608 ™ network feed associated with the
Determine one or more invisibility entity
levels with respect to one or more
followers of the entity in the online 1624
social network A -
Update a database storing content
A4 F—161 2 to be displayed in a social network
feed
Generate data indicating the one or
more invisibility levels of the ghost user
i F"1 628
1616 Generate data indicating feed items
A 4 - to be displayed according to one or

Update a database maintaining the more stored invisibility levels
identifications of users following the
entity and corresponding invisibility

levels v lan 1632

| Provide the generated data to a
display device configured to display a
first presentation of the social network
feed associated with the entity in a
user interface associated with a
second user, the first presentation
concealing one or more of the identity
of the ghost user and feed content
associated with the ghost user
according to a stored invisibility level

FIGURE 16

U.S. Patent Feb. 2, 2016 Sheet 19 of 27 US 9,253,283 B2

1704
Wy,

Forward Delete Move

Reply

Subject: XYZ Competitive Group
Date: July 5, 2012, 11:59 A.M.

To: Mary Thomas
From: Chatter_XYZ_Competitive_Group@salesforce.com

Dear Mary:
Your direct report John Smith has created the

XYZ Competitive Group.

Join as Ghost

Join 1716

Post | on Group Feed

[Email | Group Leader

Tweet | about Group

Ignore

FIGURE 17

U.S. Patent Feb. 2, 2016 Sheet 20 of 27 US 9,253,283 B2

v 1800

Ghost User Invisibility Level
XYZ Competitive Group

You are joining the XYZ Competitive Group as a Ghost User.

(@ Your membership and posts will be visible to the following

members: K1805 \1807

1812 —O No Members
1801 < 1813 —® Group Leader (John Smith)

1814 —0O All Members in my Department
1815 —O All Members in my Organization

1816 —O Departments |{Legal 1835
\ 1817 —® Committees | Executive Management }—1837
1818 —@ People { Joe Jackson, John Keynes —1838

(O Your membership and posts will be invisible to the following
members:

O All Members
O All Members except Group Leader (John Smith)

1803< O All Members in my Department
O All Members in my Organization
O Departments | Sales |

O Committees | |

\ O People | Fran Jones, Alisha Manner |

FIGURE 18

U.S. Patent Feb. 2, 2016

Sheet 21 of 27

User ID Access Invisibility
1901 Rights Level
1903 1905
ug12 R,W,D,U 0
us19 |R,W,D,U 1
U911 R 2
U110 R,D 3
U312 R,W,D 3
Entity Subscription
Table 1910
In\ngrty User IDs
1911 1913

1 U812, U323, U098, U212, U312...

2 Uo87, U090, U112, U098, Us31...

3 U098, U091, U093, U411, UDO9...

Invisibility Level Table

1920

Entity Event Invisibility
ID D Level
1921 1923 1925
0431 E37 0
0431 E90 0
0432 E37 3
Feed Table
1930

FIGURE 19

US 9,253,283 B2

US 9,253,283 B2

Sheet 22 of 27

Feb. 2, 2016

U.S. Patent

voZ 34N9id

~pmmmmmmm e

[€] sysouo epi
{oe] 11w mousg

@ sbuies dnoub

@ Gnosb-ans 150uB sjEel
O sbumes sequew

1
'
s
)
s
‘
i
i
¢

G00¢C

EFEL TN

¢
t
||||||||||| -

N£00Z

SHOOON POISMOd J8j0g @

BT Wd LO:LL Ye Aepud

iipsemio; Buinow eq

O} payoxs Aep ‘suopisenb Aue aagy NOA Ji mow sWl 18] ases|d “AdoD B 4o} payse sjdoad
{esenag “Aepol Hulleew ayl Ul PAMAIABI BM 1BY} UOMEJUSSaId BU) S D18 SWIEPY WS

USWo] WY 10:9 Je Aepo}
‘Buniosul J0IS3AUL INO 3J0J3q Aeplid Ag 85019 aMm Jey) uedodul 8 3] (1SpUO) voxesg sawer

1102

Y} UO WIC0: BLIOS SABY A_W! | ING “JINTiIe 2g 03 Buiol s| G ‘e|j3 48neg (I8

"
[l

]

]

]

1

1

1

]

]

1

|

1

1

1

]

1

]

]

1

1

i i WNd bty
(‘Stuila] 80IAJgS Byl uc sucg e
1
1
1
1
]
]
i
i
1
[
1
]
]
]
]
1
1
i
i
i
]
1
1
1

WaLf) MO} UBD BAR OB SN "MO| 00} Aem S G ‘i (JSoy0) uoxeg sawep

Erin WNd 8L 2
e
Apeal alam ‘qun 1ad G1$ 0 umop aoud sy ueo om § swoisaD) uvosuyor eyg =

6002 - o

0008

00028
Fgaeys Bumojod A [sieued
310Ny silag Jejog saandwo) €24 Ems%mwmu
B

[USIIOA wdzg'g ~ PasSSNIsip am 91onb ayj St alap Jeneg g

L 0 wng e

_ uo Buppom nok aie JBUM _

1
- Wd 157 //
1 SRAIB) 80IAISS E_ ! wOON

asesiss
Ro0quUNg LD S emndwion
£z} 104 d2eds uoyeioqeton

SIeINdWoN) €71 % Jej0s Usalh :Wooy [ea(] | [sewosno wm eenud |

OOONI\ spieogqyseg suodey sapunuoddg spdoEjU0D ﬂ::oQo<E opjoid Al dwioH
i

pnaD saies |

wnobot dpy dnieg Jseoneg g

9010/88|ES

US 9,253,283 B2

Sheet 23 of 27

Feb. 2, 2016

U.S. Patent

g0¢ 3dnN9id

Jejos usalb

[zl nwmous stoquualy

O sbunes saquisw
@ sfiumes dnosb

00qIoR peIsIG 180G
S[48BUS Bumojod A
SHOOIAN PAISMOY JBIOG

1ejos ygashb

JUBWWOT Wd L0LE Je Aeplid

jipdemic) Bulrow ag

0} payoxa AidA “suoisanb Aue aay NoA §i Mo Sl 19| asedld Ado2 e o} payse sjdosd m
{esaneg "Aepo) Bunestl aY} U pemaiAss am JBY) UOIBIUSSaIT ay} §f aley swiepy Weg rL

Nd 15y
SLUIS) 3DIAIRS

28U} UC WOOL BUI0S 8ABY ABW | ING ‘JNoiip 8q 0} BuioBb st G 'B||T Jeneg g

= N 81
0B o1 Apesi siem ‘pun Jad GL.§ 0} UMap saud Sy UeD M §| HOSUYOT Bff

34 eleyg mc_>>0=0n_ N sfaved

810Ny S|19D i80S SsBndwo) £zt m.‘mwznzmwoh

JUBWWGT Wdze:g - passnosip om sjonb oy} s 8iaj soneg (g

_ uo Bupjiom noA aie JBUM _

sieindwon €z % Jejos uealb wooy [eaq

aseo|ol
jooqung | sseindwion
£Z| 10} aveds uoneiogelon

o~ SIaindwio)
@ £cl

le|0s_Us9.s

Tm_ow uesiB yum mﬁén&

oooml\ spieoqyseq suodey sanunpoddp sjoruc) m_==o8<§ apoid AN swoy
J

pnoiD mm_mmw oo dipr dnjeg uosuyor g3

mo._o.xmm_mw

N

U.S. Patent Feb. 2, 2016 Sheet 24 of 27 US 9,253,283 B2

2100

Computer implemented method for designating
a proxy in an online social network

2104
-

Designate, at a computing device, a first user as a proxy
of a second user with respect to one or more entities in
the online social network

l (f~2108

Receive, from the proxy user, feed content to be
published in one or more social network feeds
associated with the one or more entities in the

online social network

l —2112

Associate the feed content with the second user

l (»—2116

Generate data indicating the association of the feed
content with the second user

l (»—2120

Provide the generated data to a display device configured
to display a presentation of the one or more social network
feeds in a user interface, the presentation including the
feed content and an indication of the association

FIGURE 21

U.S. Patent Feb. 2, 2016 Sheet 25 of 27 US 9,253,283 B2

s 2200

Proxy Set-Up

Designate a Proxy for:
2211—0 All

{ 2212—@® Groups [Computing |—2232

(

2213—@ Accounts [XYZ, ABC —2233
2214—0 Other | —2234

2205

22103 From| 7/4/12 | | 9:00PM | to [7/13/12] [12:00 AM |

2221 Proxy [Zach Dunn r“2222

Rights
2224—@® Read
2225—@® Write
2226—0O Delete
| 2227—@ Update

I

2220

Post as:

{ 2242—@® Joe Olsen
2244—C) Zach Dunn, proxy for Joe Olsen

2223

Submit 2260
Add another proxy

2270

FIGURE 22

US 9,253,283 B2

Sheet 26 of 27

Feb. 2, 2016

U.S. Patent

£¢ 44NSI4
00£Z @iqe Axoid

. Nd 00°G NV 006
namd £102-12-0L £102-12-0L blin | eeen | cero

" Nd 00G AV 006
dmHd £102-G2-0L €10Z-12-0L £00n | Hen | cev0

N Nd 00€ WNd 007
nama €102-12-01 €102-11-0L ooen | 10N | 1EVO
1EZ 60€2 1062 A Sy

SWB SSe00y ewiyele dols ewiLERAMEIS o |

U.S. Patent Feb. 2, 2016 Sheet 27 of 27 US 9,253,283 B2
E\I/Snt Olc|>§ ct Created by Proxy
2411 2412 ID 2413 ID 2415
E1 0615 us U121
E2 0489 U101 U098
Event History Table 2410

FIGURE 24

US 9,253,283 B2

1
SYSTEMS AND METHODS FOR GHOSTING
AND PROVIDING PROXIES IN A NETWORK
FEED

PRIORITY AND RELATED APPLICATION DATA

This patent document claims priority to co-pending and
commonly assigned U.S. Provisional Patent Application No.
61/701,485, titled “System And Method For Ghosting And
Providing Proxies In A Network Feed”, by Dunn et al., filed
on Sep. 14, 2012, which is hereby incorporated by reference
in its entirety and for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material, which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

This patent document relates generally to providing on-
demand services in an online social network using a database
system and, more specifically, to techniques for maintaining
anonymity of users of the social network.

BACKGROUND

“Cloud computing” services provide shared resources,
software, and information to computers and other devices
upon request. In cloud computing environments, software can
be accessible over the Internet rather than installed locally on
in-house computer systems. Cloud computing typically
involves over-the-Internet provision of dynamically scalable
and often virtualized resources. Technological details can be
abstracted from the users, who no longer have need for exper-
tise in, or control over, the technology infrastructure “in the
cloud” that supports them.

Database resources can be provided in a cloud computing
context. However, using conventional database management
techniques, it is difficult to know about the activity of other
users of a database system in the cloud or other network. For
example, the actions of a particular user, such as a salesper-
son, on a database resource may be important to the user’s
boss. The user can create a report about what the user has done
and send it to the boss, but such reports may be inefficient, not
timely, and incomplete. Also, it may be difficult to identify
other users who might benefit from the information in the
report.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
operations for the disclosed inventive systems, apparatus, and
methods for providing anonymity of users and providing
proxies in an online social network. These drawings in no way
limit any changes in form and detail that may be made by one
skilled in the art without departing from the spirit and scope of
the disclosed implementations.

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations.

FIG. 7 shows an example of a group feed on a group page
according to some implementations.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations.

FIG. 9A shows an example of a plurality of tables that may
be used in tracking events and creating feeds according to
some implementations.

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions.

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations.

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations.

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations.

FIG. 15 shows a flowchart of an example of a computer
implemented method 1500 for maintaining anonymity in an
online social network, performed in accordance with some
implementations.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 for maintaining anonymity in an
online social network, performed in accordance with some
implementations.

FIG. 17 shows an example of a network communication for
inviting a user to join a group as a ghost user, where the
network communication is in the form of an email displayed
in a graphical user interface (GUI) on a recipient user’s dis-
play device, according to some implementations.

US 9,253,283 B2

3

FIG. 18 shows an example of a ghost user invisibility levels
set-up window 1800 as displayed in a GUI on a display
device, where a user or administrator can define invisibility
levels, according to some implementations.

FIG. 19 shows an example of a plurality of tables that may
be used in tracking ghost users and invisibility levels and
creating feeds, according to some implementations.

FIG. 20A shows an example of a group page 2000 includ-
ing a display of feed content submitted by a ghost user.

FIG. 20B shows an example of the group page 2000 shown
in FIG. 20A in which ghost user identity and feed content
submitted by the ghost user is concealed.

FIG. 21 shows an example of a flowchart of a computer
implemented method 2100 for providing a proxy in an online
social network, performed in accordance with some imple-
mentations.

FIG. 22 shows an example of a proxy set-up page 2200 in
the form of'a GUI, as displayed on a display device according
to some implementations.

FIG. 23 shows an example of a proxy table 2300 that may
be used in tracking proxies.

FIG. 24 shows an example of an event history table 2410
that may be used in tracking proxy activity.

DETAILED DESCRIPTION

Examples of systems, apparatus, and methods according to
the disclosed implementations are described in this section.
These examples are being provided solely to add context and
aid in the understanding of the disclosed implementations. It
will thus be apparent to one skilled in the art that implemen-
tations may be practiced without some or all of these specific
details. In other instances, certain process/method operations,
also referred to herein as “blocks,” have not been described in
detail in order to avoid unnecessarily obscuring implementa-
tions. Other applications are possible, such that the following
examples should not be taken as definitive or limiting either in
scope or setting.

In the following detailed description, references are made
to the accompanying drawings, which form a part of the
description and in which are shown, by way of illustration,
specific implementations. Although these implementations
are described in sufficient detail to enable one skilled in the art
to practice the disclosed implementations, it is understood
that these examples are not limiting, such that other imple-
mentations may be used and changes may be made without
departing from their spirit and scope. For example, the blocks
of methods shown and described herein are not necessarily
performed in the order indicated. It should also be understood
that the methods may include more or fewer blocks than are
indicated. In some implementations, blocks described herein
as separate blocks may be combined. Conversely, what may
be described herein as a single block may be implemented in
multiple blocks.

Various implementations described or referenced herein
are directed to different methods, apparatus, systems, and
computer-readable storage media for maintaining anonymity
and designating proxies in an online social network, also
referred to herein as a social networking system. One
example of an online social network is Chatter®, provided by
salesforce.com, inc. of San Francisco, Calif. Online social
networks are increasingly becoming a common way to facili-
tate communication among people and groups of people, any
of whom can be recognized as users of a social networking
system. Some online social networks can be implemented in
various settings, including organizations, e.g., enterprises
such as companies or business partnerships, academic insti-

10

15

20

25

30

35

40

45

50

55

60

65

4

tutions, or groups within such an organization. For instance,
Chatter® can be used by employee users in a division of a
business organization to share data, communicate, and col-
laborate with each other for various purposes.

In some online social networks, users can access one or
more social network feeds, which include information
updates presented as items or entries in the feed. Such a feed
item can include a single information update or a collection of
individual information updates. A feed item can include vari-
ous types of data including character-based data, audio data,
image data and/or video data. A social network feed can be
displayed in a graphical user interface (GUI) on a display
device such as the display of a computing device as described
below. The information updates can include various social
network data from various sources and can be stored in an
on-demand database service environment. In some imple-
mentations, the disclosed methods, apparatus, systems, and
computer-readable storage media may be configured or
designed for use in a multi-tenant database environment.

In some implementations, an online social network may
allow a user to follow data objects in the form of records such
as cases, accounts, or opportunities, in addition to following
individual users and groups of users. The “following” of a
record stored in a database, as described in greater detail
below, allows a user to track the progress of that record.
Updates to the record, also referred to herein as changes to the
record, are one type of information update that can occur and
be noted on a social network feed such as a record feed or a
news feed of a user subscribed to the record. Examples of
record updates include field changes in the record, updates to
the status of a record, as well as the creation of the record
itself. Some records are publicly accessible, such that any
user can follow the record, while other records are private, for
which appropriate security clearance/permissions are a pre-
requisite to a user following the record.

Information updates can include various types of updates,
which may or may not be linked with a particular record. For
example, information updates can be user-submitted mes-
sages or can otherwise be generated in response to user
actions or in response to events. Examples of messages
include: posts, comments, indications of a user’s personal
preferences such as “likes™ and “dislikes”, updates to a user’s
status, uploaded files, and hyperlinks to social network data or
other network data such as various documents and/or web
pages on the Internet. Posts can include alpha-numeric or
other character-based user inputs such as words, phrases,
statements, questions, emotional expressions, and/or sym-
bols. Comments generally refer to responses to posts, such as
words, phrases, statements, answers, questions, and reaction-
ary emotional expressions and/or symbols. Multimedia data
can be included in, linked with, or attached to a post or
comment. For example, a post can include textual statements
in combination with a JPEG image or animated image. A like
or dislike can be submitted in response to a particular post or
comment. Examples of uploaded files include presentations,
documents, multimedia files, and the like.

Users can follow a record by subscribing to the record, as
mentioned above. Users can also follow other entities such as
other types of data objects, other users, and groups of users.
Feed tracked updates regarding such entities are one type of
information update that can be received and included in the
user’s news feed. Any number of users can follow a particular
entity and thus view information updates pertaining to that
entity on the users’ respective news feeds. In some social
networks, users may follow each other by establishing con-
nections with each other, sometimes referred to as “friend-
ing” one another. By establishing such a connection, one user

US 9,253,283 B2

5

may be able to see information generated by, generated about,
or otherwise associated with another user. For instance, a first
user may be able to see information posted by a second user
to the second user’s personal social network page. One imple-
mentation of such a personal social network page is a user’s
profile page, for example, in the form of a web page repre-
senting the user’s profile. In one example, when the first user
is following the second user, the first user’s news feed can
receive a post from the second user submitted to the second
user’s profile feed, also referred to herein as the user’s “wall,”
which is one example of a social network feed displayed on
the user’s profile page.

In some implementations, a social network feed may be
specific to a group of users of an online social network. For
instance, a group of users may publish a news feed. Members
of the group may view and post to this group feed in accor-
dance with a permissions configuration for the feed and the
group. Information updates in a group context can also
include changes to group status information.

In some implementations, when data such as posts or com-
ments input from one or more users are submitted to a social
network feed for a particular user, group, object, or other
construct within an online social network, an email notifica-
tion or other type of network communication may be trans-
mitted to all users following the user, group, or object in
addition to the inclusion of the data as a feed item in one or
more feeds, such as a user’s profile feed, a news feed, or a
record feed. In some online social networks, the occurrence of
such a notification is limited to the first instance of a published
input, which may form part of a larger conversation. For
instance, a notification may be transmitted for an initial post,
but not for comments on the post. In some other implemen-
tations, a separate notification is transmitted for each such
information update.

Some implementations of the disclosed systems, appara-
tus, methods, and computer readable storage media are con-
figured to maintain anonymity in an online social network.
For instance, the disclosed techniques can be implemented to
define a ghost feature to enable user invisibility, while allow-
ing the user to be fully operational in the social network.
Multiple levels of invisibility can be defined, allowing users a
flexible way to maintain their anonymity. Using some of the
implementations disclosed herein, a user can be designated as
a ghost user with respect to one or more groups, records, or
other entities in the online social network.

In some implementations, a ghost user can follow an entity,
having access to social network feeds associated with the
entity, while concealing his identity and/or content published
to the social network feed from at least some of the other
followers of the entity. For example, for training purposes, a
contract negotiation team may want a supervisor to monitor
negotiations over a social network feed. To avoid undermin-
ing the authority of the contract negotiator, the supervisor
may be designated a ghost user and avoid being visible to
others as a follower of the thread, group, or post. Further, in
some implementations, the ghost user may submit a post or
other feed content, selecting which followers can see the
content.

One or more levels of user invisibility can be defined to
determine the extent of the ghost user’s invisibility in the
online social network. For example, in one implementation,
the identity of and/or feed content associated with a ghost user
following a group may be concealed from all followers except
the group leader, all followers outside the ghost user’s depart-
ment, or all followers outside the ghost user’s organization. In
various implementations, a ghost user can select who he/she
is invisible to when requesting to be added as a ghost user, or

10

15

20

25

30

35

40

45

50

55

60

65

6

on a continuous basis, for example, when submitting a post.
In some implementations, an invisibility level may be deter-
mined by the system, for example, based on a default setting.

Various access rights may be defined for a ghost user. For
instance, in some implementations, a ghost user can have
complete access to asocial network feed, including the ability
to post if the ghost user wishes to participate. In some imple-
mentations, a ghost user may have a more limited set of access
rights, for example, the ability to read a feed, but not post to it.
Access rights can be defined when the user is designated as a
ghost user.

Some implementations of the disclosed systems, appara-
tus, methods, and computer readable storage media are con-
figured to designate a proxy in an online social network. In
some implementations, a first user can be designated a proxy
user for a second user with respect to one or more cases,
groups, accounts, and other entities in the online social net-
work. For instance, the disclosed techniques can be imple-
mented to allow a user to designate a proxy to handle his or
her cases. Feed content submitted by the proxy user can be
published in one or more social network feeds with an indi-
cation of the association with the original user.

In various implementations, the feed content can include
an indication of the proxy user or conceal the proxy user’s
identity. For example, if a user Albert Smith designates Tom
Jones to be his proxy, posts that Tom submits as Albert’s
proxy may appear to other users exactly as if Albert had
submitted the posts. Alternatively, the posts may be labeled
with an indication of the proxy such as: “Tom Jones, proxy for
Albert Smith.” Various access rights may be defined for a
proxy user. For example, a proxy user may be limited to
updating other users on the status of a case. In some imple-
mentations, proxy activity may be tracked. For example, the
identity of the proxy user and the content of the post or other
message may be stored in a database table.

These and other implementations may be embodied in
various types of hardware, software, firmware, and combina-
tions thereof. For example, some techniques disclosed herein
may be implemented, at least in part, by computer-readable
media that include program instructions, state information,
etc., for performing various services and operations described
herein. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher-level code that may be executed by a com-
puting device such as a server or other data processing appa-
ratus using an interpreter. Examples of computer-readable
media include, but are not limited to, magnetic media such as
hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROM disks; magneto-optical media; and hard-
ware devices that are specially configured to store program
instructions, such as read-only memory (“ROM”) devices
and random access memory (“RAM”) devices. These and
other features of the disclosed implementations will be
described in more detail below with reference to the associ-
ated drawings.

The term “multi-tenant database system” can refer to those
systems in which various elements of hardware and software
of a database system may be shared by one or more custom-
ers. For example, a given application server may simulta-
neously process requests for a great number of customers, and
a given database table may store rows of data such as feed
items for a potentially much greater number of customers.
The term “query plan” generally refers to one or more opera-
tions used to access information in a database system.

A “user profile” or “user’s profile” is generally configured
to store and maintain data about a given user of the database
system. The data can include general information, such as

US 9,253,283 B2

7

name, title, phone number, a photo, a biographical summary,
and a status, e.g., text describing what the user is currently
doing. As mentioned below, the data can include messages
created by other users. Where there are multiple tenants, a
user is typically associated with a particular tenant. For
example, a user could be a salesperson of a company, which
is a tenant of the database system that provides a database
service.

The term “record” generally refers to a data entity, such as
an instance of a data object created by a user of the database
service, for example, about a particular (actual or potential)
business relationship or project. The data object can have a
data structure defined by the database service (a standard
object) or defined by a user (custom object). For example, a
record can be for a business partner or potential business
partner (e.g., a client, vendor, distributor, etc.) of the user, and
can include information describing an entire company, sub-
sidiaries, or contacts at the company. As another example, a
record can be a project that the user is working on, such as an
opportunity (e.g., a possible sale) with an existing partner, or
a project that the user is trying to get. In one implementation
of'a multi-tenant database system, each record for the tenants
has a unique identifier stored in a common table. A record has
data fields that are defined by the structure of the object (e.g.,
fields of certain data types and purposes). A record can also
have custom fields defined by a user. A field can be another
record or include links thereto, thereby providing a parent-
child relationship between the records.

The terms “social network feed” and “feed” are used inter-
changeably herein and generally refer to a combination (e.g.,
a list) of feed items or entries with various types of informa-
tion and data. Such feed items can be stored and maintained in
one or more database tables, e.g., as rows in the table(s), that
can be accessed to retrieve relevant information to be pre-
sented as part of a displayed feed. The term “feed item™ (or
feed element) refers to an item of information, which can be
presented in the feed such as a post submitted by a user. Feed
items of information about a user can be presented in a user’s
profile feed of the database, while feed items of information
about a record can be presented in a record feed in the data-
base, by way of example. A profile feed and a record feed are
examples of different social network feeds. A second user
following a first user and a record can receive the feed items
associated with the first user and the record for display in the
second user’s news feed, which is another type of social
network feed. In some implementations, the feed items from
any number of followed users and records can be combined
into a single social network feed of a particular user.

As examples, a feed item can be a message, such as a
user-generated post of text data, and a feed tracked update to
a record or profile, such as a change to a field of the record.
Feed tracked updates are described in greater detail below. A
feed can be a combination of messages and feed tracked
updates. Messages include text created by a user, and may
include other data as well. Examples of messages include
posts, user status updates, and comments. Messages can be
created for a user’s profile or for a record. Posts can be created
by various users, potentially any user, although some restric-
tions can be applied. As an example, posts can be made to a
wall section of a user’s profile page (which can include a
number of recent posts) or a section of a record that includes
multiple posts. The posts can be organized in chronological
order when displayed in a graphical user interface (GUI), for
instance, on the user’s profile page, as part of the user’s profile
feed. In contrast to a post, a user status update changes a status
of'a user and can be made by that user or an administrator. A
record can also have a status, the update of which can be

10

15

20

25

30

35

40

45

50

55

60

65

8

provided by an owner of the record or other users having
suitable write access permissions to the record. The owner
can be a single user, multiple users, or a group. In one imple-
mentation, there is only one status for a record.

In some implementations, a comment can be made on any
feed item. In some implementations, comments are organized
as alistexplicitly tied to a particular feed tracked update, post,
or status update. In some implementations, comments may
not be listed in the first layer (in a hierarchal sense) of feed
items, but listed as a second layer branching from a particular
first layer feed item.

A “feed tracked update,” also referred to herein as a “feed
update,” is one type of information update and generally
refers to data representing an event. A feed tracked update can
include text generated by the database system in response to
the event, to be provided as one or more feed items for
possible inclusion in one or more feeds. In one implementa-
tion, the data can initially be stored, and then the database
system can later use the data to create text for describing the
event. Both the data and/or the text can be a feed tracked
update, as used herein. In various implementations, an event
can be an update of a record and/or can be triggered by a
specific action by auser. Which actions trigger an event can be
configurable. Which events have feed tracked updates created
and which feed updates are sent to which users can also be
configurable. Messages and feed updates can be stored as a
field or child object of the record. For example, the feed can be
stored as a child object of the record.

A “group” is generally a collection of users. In some imple-
mentations, the group may be defined as users with a same or
similar attribute, or by membership. In some implementa-
tions, a “group feed”, also referred to herein as a “group news
feed”, includes one or more feed items about any user in the
group. In some implementations, the group feed also includes
information updates and other feed items that are about the
group as a whole, the group’s purpose, the group’s descrip-
tion, and group records and other objects stored in association
with the group. Threads of information updates including
group record updates and messages, such as posts, comments,
likes, etc., can define group conversations and change over
time.

An “entity feed” or “record feed” generally refers to a feed
of'feed items about a particular record in the database, such as
feed tracked updates about changes to the record and posts
made by users about the record. An entity feed can be com-
posed of any type of feed item. Such a feed can be displayed
on a page such as a web page associated with the record, e.g.,
ahome page of the record. As used herein, a “profile feed” or
“user’s profile feed” is a feed of feed items about a particular
user. In one example, the feed items for a profile feed include
posts and comments that other users make about or send to the
particular user, and status updates made by the particular user.
Such a profile feed can be displayed on a page associated with
the particular user. In another example, feed items in a profile
feed could include posts made by the particular user and feed
tracked updates initiated based on actions of the particular
user.

1. General Overview

Systems, apparatus, and methods are provided for imple-
menting enterprise level social and business information net-
working. Such implementations can provide more efficient
use of a database system. For instance, a user of a database
system may not easily know when important information in
the database has changed, e.g., about a project or client.
Implementations can provide feed tracked updates about such
changes and other events, thereby keeping users informed.

US 9,253,283 B2

9

By way of example, a user can update a record, e.g., an
opportunity such as a possible sale of 1000 computers. Once
the record update has been made, a feed tracked update about
the record update can then automatically be provided, e.g., in
afeed, to anyone subscribing to the opportunity or to the user.
Thus, the user does not need to contact a manager regarding
the change in the opportunity, since the feed tracked update
about the update is sent via a feed right to the manager’s feed
page or other page.

Next, mechanisms and methods for providing systems
implementing enterprise level social and business informa-
tion networking will be described with reference to several
implementations. First, an overview of an example of a data-
base system is described, and then examples of tracking
events for a record, actions of a user, and messages about a
user or record are described. Various implementations about
the data structure of feeds, customizing feeds, user selection
of records and users to follow, generating feeds, and display-
ing feeds are also described.

II. System Overview

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations. Environment
10 may include user systems 12, network 14, database system
16, processor system 17, application platform 18, network
interface 20, tenant data storage 22, system data storage 24,
program code 26, and process space 28. In other implemen-
tations, environment 10 may not have all of these components
and/or may have other components instead of, or in addition
to, those listed above.

Environment 10 is an environment in which an on-demand
database service exists. User system 12 may be implemented
as any computing device(s) or other data processing appara-
tus such as a machine or system that is used by a user to access
a database system 16. For example, any of user systems 12
can be a handheld computing device, a mobile phone, a laptop
computer, a work station, and/or a network of such computing
devices. As illustrated in FIG. 1A (and in more detail in FIG.
1B) user systems 12 might interact via a network 14 with an
on-demand database service, which is implemented in the
example of FIG. 1A as database system 16.

An on-demand database service, implemented using sys-
tem 16 by way of example, is a service that is made available
to outside users, who do not need to necessarily be concerned
with building and/or maintaining the database system.
Instead, the database system may be available for their use
when the users need the database system, i.e., on the demand
of the users. Some on-demand database services may store
information from one or more tenants into tables of a common
database image to form a multi-tenant database system
(MTS). A database image may include one or more database
objects. A relational database management system (RDBMS)
or the equivalent may execute storage and retrieval of infor-
mation against the database object(s). Application platform
18 may be a framework that allows the applications of system
16 to run, such as the hardware and/or software, e.g., the
operating system. In some implementations, application plat-
form 18 enables creation, managing and executing one or
more applications developed by the provider of the on-de-
mand database service, users accessing the on-demand data-
base service via user systems 12, or third party application
developers accessing the on-demand database service via
user systems 12.

The users of user systems 12 may differ in their respective
capacities, and the capacity of a particular user system 12
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson

10

15

20

25

30

35

40

45

50

55

60

65

10

is using a particular user system 12 to interact with system 16,
that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to
interact with system 16, that user system has the capacities
allotted to that administrator. In systems with a hierarchical
role model, users at one permission level may have access to
applications, data, and database information accessible by a
lower permission level user, but may not have access to cer-
tain applications, database information, and data accessible
by a user at a higher permission level. Thus, different users
will have different capabilities with regard to accessing and
modifying application and database information, depending
on a user’s security or permission level, also called authori-
zation.

Network 14 is any network or combination of networks of
devices that communicate with one another. For example,
network 14 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. Network 14 can include a TCP/IP (Transfer
Control Protocol and Internet Protocol) network, such as the
global internetwork of networks often referred to as the
“Internet” with a capital “I.” The Internet will be used in many
of'the examples herein. However, it should be understood that
the networks that the present implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.

User systems 12 might communicate with system 16 using
TCP/IP and, at a higher network level, use other common
Internet protocols to communicate, such as HI'TP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 12
might include an HTTP client commonly referred to as a
“browser” for sending and receiving HT'TP signals to and
from an HTTP server at system 16. Such an HTTP server
might be implemented as the sole network interface 20
between system 16 and network 14, but other techniques
might be used as well or instead. In some implementations,
the network interface 20 between system 16 and network 14
includes load sharing functionality, such as round-robin
HTTP request distributors to balance loads and distribute
incoming HTTP requests evenly over a plurality of servers. At
least for users accessing system 16, each of the plurality of
servers has access to the MTS’ data; however, other alterna-
tive configurations may be used instead.

In one implementation, system 16, shown in FIG. 1A,
implements a web-based customer relationship management
(CRM) system. For example, in one implementation, system
16 includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, web pages and other information to and
from user systems 12 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object in tenant data
storage 22, however, tenant data typically is arranged in the
storage medium(s) of tenant data storage 22 so that data of
one tenant is kept logically separate from that of other tenants
so that one tenant does not have access to another tenant’s
data, unless such data is expressly shared. In certain imple-
mentations, system 16 implements applications other than, or
in addition to, a CRM application. For example, system 16
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18, which manages creation, storage of the applications into

US 9,253,283 B2

11

one or more database objects and executing of the applica-
tions in a virtual machine in the process space of the system
16.

One arrangement for elements of system 16 is shown in
FIGS. 1A and 1B, including a network interface 20, applica-
tion platform 18, tenant data storage 22 for tenant data 23,
system data storage 24 for system data 25 accessible to sys-
tem 16 and possibly multiple tenants, program code 26 for
implementing various functions of system 16, and a process
space 28 for executing MTS system processes and tenant-
specific processes, such as running applications as part of an
application hosting service. Additional processes that may
execute on system 16 include database indexing processes.

Several elements in the system shown in FIG. 1A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 12 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. The
term “computing device” is also referred to herein simply as
a “computer”. User system 12 typically runs an HTTP client,
e.g., a browsing program, such as Microsoft’s Internet
Explorer browser, Netscape’s Navigator browser, Opera’s
browser, or a WAP-enabled browser in the case of a cell
phone, PDA or other wireless device, or the like, allowing a
user (e.g., subscriber of the multi-tenant database system) of
user system 12 to access, process and view information, pages
and applications available to it from system 16 over network
14. Each user system 12 also typically includes one or more
user input devices, such as a keyboard, a mouse, trackball,
touch pad, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display (e.g., a monitor screen, LCD display, etc.) of the
computing device in conjunction with pages, forms, applica-
tions and other information provided by system 16 or other
systems or servers. For example, the user interface device can
be used to access data and applications hosted by system 16,
and to perform searches on stored data, and otherwise allow a
user to interact with various GUI pages that may be presented
to a user. As discussed above, implementations are suitable
for use with the Internet, although other networks can be used
instead of or in addition to the Internet, such as an intranet, an
extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.

According to one implementation, each user system 12 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
or the like. Similarly, system 16 (and additional instances of
an MTS, where more than one is present) and all of its com-
ponents might be operator configurable using application(s)
including computer code to run using processor system 17,
which may be implemented to include a central processing
unit, which may include an Intel Pentium® processor or the
like, and/or multiple processor units. Non-transitory com-
puter-readable media can have instructions stored thereon/in,
that can be executed by or used to program a computing
device to perform any of the methods of the implementations
described herein. Computer program code 26 implementing
instructions for operating and configuring system 16 to inter-
communicate and to process web pages, applications and
other data and media content as described herein is preferably
downloadable and stored on a hard disk, but the entire pro-
gram code, or portions thereof, may also be stored in any
other volatile or non-volatile memory medium or device as is
well known, such as a ROM or RAM, or provided on any

20

25

30

40

45

55

12

media capable of storing program code, such as any type of
rotating media including floppy disks, optical discs, digital
versatile disk (DVD), compact disk (CD), microdrive, and
magneto-optical disks, and magnetic or optical cards, nano-
systems (including molecular memory ICs), or any other type
of computer-readable medium or device suitable for storing
instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and downloaded
from a software source over a transmission medium, e.g., over
the Internet, or from another server, as is well known, or
transmitted over any other conventional network connection
as is well known (e.g., extranet, VPN, LAN, etc.) using any
communication medium and protocols (e.g., TCP/IP, HTTP,
HTTPS, Ethernet, etc.) as are well known. It will also be
appreciated that computer code for the disclosed implemen-
tations can be realized in any programming language that can
be executed on a client system and/or server or server system
such as, for example, C, C++, HITML, any other markup
language, Java™, JavaScript, ActiveX, any other scripting
language, such as VBScript, and many other programming
languages as are well known may be used. (Java™ is a trade-
mark of Sun Microsystems, Inc.).

According to some implementations, each system 16 is
configured to provide web pages, forms, applications, data
and media content to user (client) systems 12 to support the
access by user systems 12 as tenants of system 16. As such,
system 16 provides security mechanisms to keep each ten-
ant’s data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term “server” is
meant to refer to a computing device or system, including
processing hardware and process space(s), an associated stor-
age medium such as a memory device or database, and, in
some instances, a database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under-
stood that “server system” and “server” are often used inter-
changeably herein. Similarly, the database objects described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan-
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements. That is, FIG. 1B
also illustrates environment 10. However, in FIG. 1B ele-
ments of system 16 and various interconnections in some
implementations are further illustrated. FIG. 1B shows that
user system 12 may include processor system 12A, memory
system 12B, input system 12C, and output system 12D. FIG.
1B shows network 14 and system 16. FIG. 1B also shows that
system 16 may include tenant data storage 22, tenant data 23,
system data storage 24, system data 25, User Interface (UI)
30, Application Program Interface (API) 32, PL/SOQL 34,
save routines 36, application setup mechanism 38, applica-
tions servers 1001-100N, system process space 102, tenant
process spaces 104, tenant management process space 110,
tenant storage space 112, user storage 114, and application
metadata 116. In other implementations, environment 10 may

US 9,253,283 B2

13

not have the same elements as those listed above and/or may
have other elements instead of, or in addition to, those listed
above.

User system 12, network 14, system 16, tenant data storage
22, and system data storage 24 were discussed above in FIG.
1A. Regarding user system 12, processor system 12A may be
any combination of one or more processors. Memory system
12B may be any combination of one or more memory devices,
short term, and/or long term memory. Input system 12C may
be any combination of input devices, such as one or more
keyboards, mice, trackballs, scanners, cameras, and/or inter-
faces to networks. Output system 12D may be any combina-
tion of output devices, such as one or more monitors, printers,
and/or interfaces to networks. As shown by FIG. 1B, system
16 may include a network interface 20 (of FIG. 1A) imple-
mented as a set of HTTP application servers 100, an applica-
tion platform 18, tenant data storage 22, and system data
storage 24. Also shown is system process space 102, includ-
ing individual tenant process spaces 104 and a tenant man-
agement process space 110. Each application server 100 may
be configured to communicate with tenant data storage 22 and
the tenant data 23 therein, and system data storage 24 and the
system data 25 therein to serve requests of user systems 12.
The tenant data 23 might be divided into individual tenant
storage spaces 112, which can be either a physical arrange-
ment and/or a logical arrangement of data. Within each tenant
storage space 112, user storage 114 and application metadata
116 might be similarly allocated for each user. For example,
a copy of a user’s most recently used (MRU) items might be
stored to user storage 114. Similarly, a copy of MRU items for
an entire organization that is a tenant might be stored to tenant
storage space 112. A UI 30 provides a user interface and an
API 32 provides an application programmer interface to sys-
tem 16 resident processes to users and/or developers at user
systems 12. The tenant data and the system data may be stored
in various databases, such as one or more Oracle databases.

Application platform 18 includes an application setup
mechanism 38 that supports application developers’ creation
and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for
execution by subscribers as one or more tenant process spaces
104 managed by tenant management process 110 for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 32. A detailed description of
some PL/SOQL language implementations is discussed in
commonly assigned U.S. Pat. No. 7,730,478, titled
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weissman,
issued on Jun. 1, 2010, and hereby incorporated by reference
in its entirety and for all purposes. Invocations to applications
may be detected by one or more system processes, which
manage retrieving application metadata 116 for the sub-
scriber making the invocation and executing the metadata as
an application in a virtual machine.

Each application server 100 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connection.
For example, one application server 1001 might be coupled
via the network 14 (e.g., the Internet), another application
server 100N-1 might be coupled viaa direct network link, and
another application server 100N might be coupled by yet a
different network connection. Transfer Control Protocol and
Internet Protocol (TCP/IP) are typical protocols for commu-
nicating between application servers 100 and the database
system. However, it will be apparent to one skilled in the art

10

15

20

25

30

35

40

45

50

55

60

65

14

that other transport protocols may be used to optimize the
system depending on the network interconnect used.

In certain implementations, each application server 100 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server
100. In one implementation, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli-
cation servers 100 and the user systems 12 to distribute
requests to the application servers 100. In one implementa-
tion, the load balancer uses a least connections algorithm to
route user requests to the application servers 100. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example, in
certain implementations, three consecutive requests from the
same user could hit three different application servers 100,
and three requests from different users could hit the same
application server 100. In this manner, by way of example,
system 16 is multi-tenant, wherein system 16 handles storage
of, and access to, different objects, data and applications
across disparate users and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., in tenant data stor-
age 22). In an example of a MTS arrangement, since all of the
data and the applications to access, view, modify, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is visiting a customer and the customer has Internet access in
their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 16 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant-
specific data, system 16 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

In certain implementations, user systems 12 (which may be
client systems) communicate with application servers 100 to
request and update system-level and tenant-level data from
system 16 that may involve sending one or more queries to
tenant data storage 22 and/or system data storage 24. System
16 (e.g., an application server 100 in system 16) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired

US 9,253,283 B2

15

information. System data storage 24 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the concep-
tual description of objects and custom objects according to
some implementations. It should be understood that “table”
and “object” may be used interchangeably herein. Each table
generally contains one or more data categories logically
arranged as columns or fields in a viewable schema. Each row
or record of a table contains an instance of data for each
category defined by the fields. For example, a CRM database
may include a table that describes a customer with fields for
basic contact information such as name, address, phone num-
ber, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided for use by
all tenants. For CRM database applications, such standard
entities might include tables for case, account, contact, lead,
and opportunity data objects, each containing pre-defined
fields. It should be understood that the word “entity” may also
be used interchangeably herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-
tom index fields. Commonly assigned U.S. Pat. No. 7,779,
039, titled CUSTOM ENTITIES AND FIELDS IN A
MULTI-TENANT DATABASE SYSTEM, by Weissman et
al., issued on Aug. 17, 2010, and hereby incorporated by
reference in its entirety and for all purposes, teaches systems
and methods for creating custom objects as well as custom-
izing standard objects in a multi-tenant database system. In
certain implementations, for example, all custom entity data
rows are stored in a single multi-tenant physical table, which
may contain multiple logical tables per organization. It is
transparent to customers that their multiple “tables” are in fact
stored in one large table or that their data may be stored in the
same table as the data of other customers.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations. A cli-
ent machine located in the cloud 204, generally referring to
one or more networks in combination, as described herein,
may communicate with the on-demand database service envi-
ronment via one or more edge routers 208 and 212. A client
machine can be any of the examples of user systems 12
described above. The edge routers may communicate with
one or more core switches 220 and 224 via firewall 216. The
core switches may communicate with a load balancer 228,
which may distribute server load over different pods, such as
the pods 240 and 244. The pods 240 and 244, which may each
include one or more servers and/or other computing
resources, may perform data processing and other operations
used to provide on-demand services. Communication with
the pods may be conducted via pod switches 232 and 236.
Components of the on-demand database service environment
may communicate with a database storage 256 via a database
firewall 248 and a database switch 252.

As shown in FIGS. 2A and 2B, accessing an on-demand
database service environment may involve communications
transmitted among a variety of different hardware and/or
software components. Further, the on-demand database ser-
vice environment 200 is a simplified representation of an
actual on-demand database service environment. For

5

10

15

20

25

30

35

40

45

50

55

60

65

16

example, while only one or two devices of each type are
shown in FIGS. 2A and 2B, some implementations of an
on-demand database service environment may include any-
where from one to many devices of each type. Also, the
on-demand database service environment need not include
each device shown in FIGS. 2A and 2B, or may include
additional devices not shown in FIGS. 2A and 2B.

Moreover, one or more of the devices in the on-demand
database service environment 200 may be implemented on
the same physical device or on different hardware. Some
devices may be implemented using hardware or a combina-
tion of hardware and software. Thus, terms such as “data
processing apparatus,” “machine,” “server” and “device” as
used herein are not limited to a single hardware device, but
rather include any hardware and software configured to pro-
vide the described functionality.

The cloud 204 is intended to refer to a data network or
plurality of data networks, often including the Internet. Client
machines located in the cloud 204 may communicate with the
on-demand database service environment to access services
provided by the on-demand database service environment.
For example, client machines may access the on-demand
database service environment to retrieve, store, edit, and/or
process information.

In some implementations, the edge routers 208 and 212
route packets between the cloud 204 and other components of
the on-demand database service environment 200. The edge
routers 208 and 212 may employ the Border Gateway Proto-
col (BGP). The BGP is the core routing protocol of the Inter-
net. The edge routers 208 and 212 may maintain a table of IP
networks or ‘prefixes’, which designate network reachability
among autonomous systems on the Internet.

In one or more implementations, the firewall 216 may
protect the inner components of the on-demand database
service environment 200 from Internet traffic. The firewall
216 may block, permit, or deny access to the inner compo-
nents of the on-demand database service environment 200
based upon a set of rules and other criteria. The firewall 216
may act as one or more of a packet filter, an application
gateway, a stateful filter, a proxy server, or any other type of
firewall.

In some implementations, the core switches 220 and 224
are high-capacity switches that transfer packets within the
on-demand database service environment 200. The core
switches 220 and 224 may be configured as network bridges
that quickly route data between different components within
the on-demand database service environment. In some imple-
mentations, the use of two or more core switches 220 and 224
may provide redundancy and/or reduced latency.

In some implementations, the pods 240 and 244 may per-
form the core data processing and service functions provided
by the on-demand database service environment. Each pod
may include various types of hardware and/or software com-
puting resources. An example of the pod architecture is dis-
cussed in greater detail with reference to FIG. 2B.

In some implementations, communication between the
pods 240 and 244 may be conducted via the pod switches 232
and 236. The pod switches 232 and 236 may facilitate com-
munication between the pods 240 and 244 and client
machines located in the cloud 204, for example via core
switches 220 and 224. Also, the pod switches 232 and 236
may facilitate communication between the pods 240 and 244
and the database storage 256.

In some implementations, the load balancer 228 may dis-
tribute workload between the pods 240 and 244. Balancing
the on-demand service requests between the pods may assist
in improving the use of resources, increasing throughput,

2 <

US 9,253,283 B2

17

reducing response times, and/or reducing overhead. The load
balancer 228 may include multilayer switches to analyze and
forward traffic.

In some implementations, access to the database storage
256 may be guarded by a database firewall 248. The database
firewall 248 may act as a computer application firewall oper-
ating at the database application layer of a protocol stack. The
database firewall 248 may protect the database storage 256
from application attacks such as structure query language
(SQL) injection, database rootkits, and unauthorized infor-
mation disclosure.

In some implementations, the database firewall 248 may
include a host using one or more forms of reverse proxy
services to proxy traffic before passing it to a gateway router.
The database firewall 248 may inspect the contents of data-
base traffic and block certain content or database requests.
The database firewall 248 may work on the SQL application
level atop the TCP/IP stack, managing applications’ connec-
tion to the database or SQL. management interfaces as well as
intercepting and enforcing packets traveling to or from a
database network or application interface.

In some implementations, communication with the data-
base storage 256 may be conducted via the database switch
252. The multi-tenant database storage 256 may include more
than one hardware and/or software components for handling
database queries. Accordingly, the database switch 252 may
direct database queries transmitted by other components of
the on-demand database service environment (e.g., the pods
240 and 244) to the correct components within the database
storage 256.

In some implementations, the database storage 256 is an
on-demand database system shared by many different orga-
nizations. The on-demand database system may employ a
multi-tenant approach, a virtualized approach, or any other
type of database approach. An on-demand database system is
discussed in greater detail with reference to FIGS. 1A and 1B.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions. The pod 244 may be used to render services to a user of
the on-demand database service environment 200. In some
implementations, each pod may include a variety of servers
and/or other systems. The pod 244 includes one or more
content batch servers 264, content search servers 268, query
servers 282, file force servers 286, access control system
(ACS) servers 280, batch servers 284, and app servers 288.
Also, the pod 244 includes database instances 290, quick file
systems (QFS) 292, and indexers 294. In one or more imple-
mentations, some or all communication between the servers
in the pod 244 may be transmitted via the switch 236.

In some implementations, the app servers 288 may include
a hardware and/or software framework dedicated to the
execution of procedures (e.g., programs, routines, scripts) for
supporting the construction of applications provided by the
on-demand database service environment 200 via the pod
244. In some implementations, the hardware and/or software
framework of an app server 288 is configured to execute
operations of the services described herein, including perfor-
mance of the blocks of methods described with reference to
FIGS. 15-24. In alternative implementations, two or more app
servers 288 may be included and cooperate to perform such
methods, or one or more other servers described herein can be
configured to perform the disclosed methods.

The content batch servers 264 may handle requests internal
to the pod. These requests may be long-running and/or not
tied to a particular customer. For example, the content batch

20

25

40

45

55

18

servers 264 may handle requests related to log mining,
cleanup work, and maintenance tasks.

The content search servers 268 may provide query and
indexer functions. For example, the functions provided by the
content search servers 268 may allow users to search through
content stored in the on-demand database service environ-
ment.

The file force servers 286 may manage requests for infor-
mation stored in the Fileforce storage 298. The Fileforce
storage 298 may store information such as documents,
images, and basic large objects (BLOBs). By managing
requests for information using the file force servers 286, the
image footprint on the database may be reduced.

The query servers 282 may be used to retrieve information
from one or more file systems. For example, the query system
282 may receive requests for information from the app serv-
ers 288 and then transmit information queries to the NFS 296
located outside the pod.

The pod 244 may share a database instance 290 configured
as a multi-tenant environment in which different organiza-
tions share access to the same database. Additionally, services
rendered by the pod 244 may call upon various hardware
and/or software resources. In some implementations, the ACS
servers 280 may control access to data, hardware resources,
or software resources.

In some implementations, the batch servers 284 may pro-
cess batch jobs, which are used to run tasks at specified times.
Thus, the batch servers 284 may transmit instructions to other
servers, such as the app servers 288, to trigger the batch jobs.

In some implementations, the QFS 292 may be an open
source file system available from Sun Microsystems® of
Santa Clara, Calif. The QFS may serve as a rapid-access file
system for storing and accessing information available within
the pod 244. The QFS 292 may support some volume man-
agement capabilities, allowing many disks to be grouped
together into a file system. File system metadata can be kept
on a separate set of disks, which may be useful for streaming
applications where long disk seeks cannot be tolerated. Thus,
the QFS system may communicate with one or more content
search servers 268 and/or indexers 294 to identify, retrieve,
move, and/or update data stored in the network file systems
296 and/or other storage systems.

In some implementations, one or more query servers 282
may communicate with the NFS 296 to retrieve and/or update
information stored outside of the pod 244. The NFS 296 may
allow servers located in the pod 244 to access information to
access files over a network in a manner similar to how local
storage is accessed.

In some implementations, queries from the query servers
222 may be transmitted to the NFS 296 via the load balancer
228, which may distribute resource requests over various
resources available in the on-demand database service envi-
ronment. The NFS 296 may also communicate with the QFS
292 to update the information stored on the NFS 296 and/or to
provide information to the QFS 292 for use by servers located
within the pod 244.

In some implementations, the pod may include one or more
database instances 290. The database instance 290 may trans-
mit information to the QFS 292. When information is trans-
mitted to the QFS, it may be available for use by servers
within the pod 244 without using an additional database call.

In some implementations, database information may be
transmitted to the indexer 294. Indexer 294 may provide an
index of information available in the database 290 and/or
QFS 292. The index information may be provided to file force
servers 286 and/or the QFS 292.

US 9,253,283 B2

19

III. Tracking Updates to a Record Stored in a Database

As multiple users might be able to change the data of a
record, it can be useful for certain users to be notified when a
record is updated. Also, even if a user does not have authority
to change a record, the user still might want to know when
there is an update to the record. For example, a vendor may
negotiate a new price with a salesperson of company X, where
the salesperson is a user associated with tenant Y. As part of
creating a new invoice or for accounting purposes, the sales-
person can change the price saved in the database. It may be
important for co-workers to know that the price has changed.
The salesperson could send an email to certain people, but this
is onerous and the salesperson might not email all of the
people who need to know or want to know. Accordingly, some
implementations of the disclosed techniques can inform oth-
ers (e.g., co-workers) who want to know about an update to a
record automatically.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.
Method 300 (and other methods described herein) may be
implemented at least partially with multi-tenant database sys-
tem 16, e.g., by one or more processors configured to receive
or retrieve information, process the information, store results,
and transmit the results. In other implementations, method
300 may be implemented at least partially with a single tenant
database system. In various implementations, blocks may be
omitted, combined, or split into additional blocks for method
300, as well as for other methods described herein.

In block 310, the database system receives a request to
update a first record. In one implementation, the request is
received from a first user. For example, a user may be access-
ing a page associated with the first record, and may change a
displayed field and hit save. In another implementation, the
database system can automatically create the request. For
instance, the database system can create the request in
response to another event, e.g., a request to change a field
could be sent periodically at a particular date and/or time of
day, or a change to another field or object. The database
system can obtain a new value based on other fields of a
record and/or based on parameters in the system.

The request for the update of a field of a record is an
example of an event associated with the first record for which
a feed tracked update may be created. In other implementa-
tions, the database system can identify other events besides
updates to fields of a record. For example, an event can be a
submission of approval to change a field. Such an event can
also have an associated field (e.g., a field showing a status of
whether a change has been submitted). Other examples of
events can include creation of a record, deletion of a record,
converting a record from one type to another (e.g., converting
a lead to an opportunity), closing a record (e.g., a case type
record), and potentially any other state change of a record—
any of which could include a field change associated with the
state change. Any of these events update the record whether
by changing a field of the record, a state of the record, or some
other characteristic or property of the record. In one imple-
mentation, a list of supported events for creating a feed
tracked update can be maintained within the database system,
e.g., at a server or in a database.

In block 320, the database system writes new data to the
first record. In one implementation, the new data may include
a new value that replaces old data. For example, a field is
updated with a new value. In another implementation, the new
data can be a value for a field that did not contain data before.

30

40

45

55

20

In yet another implementation, the new data could be a flag,
e.g., for a status of the record, which can be stored as a field of
the record.

In some implementations, a “field” can also include
records, which are child objects of the first record in a parent-
child hierarchy. A field can alternatively include a pointer to a
child record. A child object itself can include further fields.
Thus, if a field of a child object is updated with a new value,
the parent record also can be considered to have a field
changed. In one example, a field could be a list of related child
objects, also called a related list.

In block 330, a feed tracked update is generated about the
update to the record. In one implementation, the feed tracked
update is created in parts for assembling later into a display
version. For example, event entries can be created and tracked
in a first table, and changed field entries can be tracked in
another table that is cross-referenced with the first table. More
specifics of such implementations are provided later, e.g.,
with respect to FIG. 9A. In another implementation, the feed
tracked update is automatically generated by the database
system. The feed tracked update can convey in words that the
first record has been updated and provide details about what
was updated in the record and who performed the update. In
some implementations, a feed tracked update is generated for
only certain types of event and/or updates associated with the
first record.

In one implementation, a tenant (e.g., through an adminis-
trator) can configure the database system to create (enable)
feed tracked updates only for certain types of records. For
example, an administrator can specify that records of desig-
nated types such as accounts and opportunities are enabled.
When an update (or other event) is received for the enabled
record type, then a feed tracked update would be generated. In
another implementation, a tenant can also specify the fields of
arecord whose changes are to be tracked, and for which feed
tracked updates are created. In one aspect, a maximum num-
ber of fields can be specified for tracking, and may include
custom fields. In one implementation, the type of change can
also be specified, for example, that the value change of a field
is to be larger than a threshold (e.g., an absolute amount or a
percentage change). In yet another implementation, a tenant
can specify which events are to cause a generation of a feed
tracked update. Also, in one implementation, individual users
can specify configurations specific to them, which can create
custom feeds as described in more detail below.

In one implementation, changes to fields of a child object
are not tracked to create feed tracked updates for the parent
record. In another implementation, the changes to fields of a
child object can be tracked to create feed tracked updates for
the parent record. For example, a child object of the parent
type can be specified for tracking, and certain fields of the
child object can be specified for tracking As another example,
if the child object is of a type specified for tracking, then a
tracked change for the child object is propagated to parent
records of the child object.

In block 340, the feed tracked update is added to a feed for
the first record. In one implementation, adding the feed
tracked update to a feed can include adding events to a table
(which may be specific to a record or be for all or a group of
objects), where a display version of a feed tracked update can
be generated dynamically and presented in a GUI as a feed
item when a user requests a feed for the first record. In another
implementation, a display version of a feed tracked update
can be added when a record feed is stored and maintained for
a record. As mentioned above, a feed may be maintained for
only certain records. In one implementation, the feed of a
record can be stored in the database associated with the

US 9,253,283 B2

21

record. For example, the feed can be stored as a field (e.g., as
achild object) of the record. Such a field can store a pointer to
the text to be displayed for the feed tracked update.

In some implementations, only the current feed tracked
update (or other current feed item) may be kept or temporarily
stored, e.g., in some temporary memory structure. For
example, a feed tracked update for only a most recent change
to any particular field is kept. In other implementations, many
previous feed tracked updates may be kept in the feed. A time
and/or date for each feed tracked update can be tracked.
Herein, a feed of a record is also referred to as an entity feed,
as a record is an instance of a particular entity object of the
database.

In block 350, followers of the first record can be identified.
A follower is a user following the first record, such as a
subscriber to the feed of the first record. In one implementa-
tion, when a user requests a feed of a particular record, such
an identification of block 350 can be omitted. In another
implementation where a record feed is pushed to a user (e.g.,
as part of a news feed), then the user can be identified as a
follower of the first record. Accordingly, this block can
include the identification of records and other objects being
followed by a particular user.

In one implementation, the database system can store a list
of'the followers for a particular record. In various implemen-
tations, the list can be stored with the first record or associated
with the record using an identifier (e.g., a pointer) to retrieve
the list. For example, the list can be stored in a field of the first
record. In another implementation, a list of the records that a
user is following is used. In one implementation, the database
system can have a routine that runs for each user, where the
routine polls the records in the list to determine if a new feed
tracked update has been added to a feed of the record. In
another implementation, the routine for the user can be run-
ning at least partially on a user device, which contacts the
database to perform the polling.

In block 360, in one implementation, the feed tracked
update can be stored in a table, as described in greater detail
below. When the user opens a feed, an appropriate query is
sent to one or more tables to retrieve updates to records, also
described in greater detail below. In some implementations,
the feed shows feed tracked updates in reverse chronological
order. In one implementation, the feed tracked update is
pushed to the feed of a user, e.g., by a routine that determines
the followers for the record from a list associated with the
record. In another implementation, the feed tracked update is
pulled to a feed, e.g., by auser device. This pulling may occur
when a user requests the feed, as occurs in block 370. Thus,
these actions may occur in a different order. The creation of
the feed for a pull may be a dynamic creation that identifies
records being followed by the requesting user, generates the
display version of relevant feed tracked updates from stored
information (e.g., event and field change), and adds the feed
tracked updates into the feed. A feed of feed tracked updates
of records and other objects that a user is following is also
generally referred to herein as a news feed, which can be a
subset of a larger social network feed in which other types of
information updates appear, such as posts.

In yet another implementation, the feed tracked update
could be sent as an email to the follower, instead of in a feed.
In one implementation, email alerts for events can enable
people to be emailed when certain events occur. In another
implementation, emails can be sent when there are posts on a
user profile and posts on entities to which the user subscribes.
In one implementation, a user can turn on/off email alerts for
all or some events. In an implementation, a user can specify
what kind of feed tracked updates to receive about a record

25

40

45

50

55

22

that the user is following. For example, a user can choose to
only receive feed tracked updates about certain fields of a
record that the user is following, and potentially about what
kind of update was performed (e.g., a new value input into a
specified field, or the creation of a new field).

Inblock 370, a follower can access his/her news feed to see
the feed tracked update. In one implementation, the user has
just one news feed for all of the records that the user is
following. In one aspect, a user can access his/her own feed by
selecting a particular tab or other object on a page of an
interface to the database system. Once selected the feed can
be provided as a list, e.g., with an identifier (e.g., a time) or
including some or all of the text of the feed tracked update. In
another implementation, the user can specify how the feed
tracked updates are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of
where the feed can be selected and displayed, amount of text
to be displayed, and other text or symbols to be displayed
(e.g., importance flags).

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations. Database system configuration 400 can
perform implementations of method 300, as well as imple-
mentations of other methods described herein.

A first user 405 sends a request 1 to update record 425 in
database system 416. Although an update request is
described, other events that are being tracked are equally
applicable. In various implementations, the request 1 can be
sent via a user interface (e.g., 30 of FIG. 1B) or an application
program interface (e.g., AP132). An I/O port 420 can accom-
modate the signals of request 1 via any input interface, and
send the signals to one or more processors 417. The processor
417 can analyze the request and determine operations to be
performed. Herein, any reference to a processor 417 can refer
to a specific processor or any set of processors in database
system 416, which can be collectively referred to as processor
417.

Processor 417 can determine an identifier for record 425,
and send commands with the new data 2 of the request to
record database 412 to update record 425. In one implemen-
tation, record database 412 is where tenant storage space 112
of FIG. 1B is located. The request 1 and new data commands
2 can be encapsulated in a single write transaction sent to
record database 412. In one implementation, multiple
changes to records in the database can be made in a single
write transaction.

Processor 417 can also analyze request 1 to determine
whether a feed tracked update is to be created, which at this
point may include determining whether the event (e.g., a
change to a particular field) is to be tracked. This determina-
tion can be based on an interaction (i.e., an exchange of data)
with record database 412 and/or other databases, or based on
information stored locally (e.g., in cache or RAM) at proces-
sor 417. In one implementation, a list of record types that are
being tracked can be stored. The list may be different for each
tenant, e.g., as each tenant may configure the database system
to its own specifications. Thus, if the record 425 is of a type
not being tracked, then the determination of whether to create
a feed tracked update can stop there.

The same list or a second list (which can be stored in a same
location or a different location) can also include the fields
and/or events that are tracked for the record types in the first
list. This list can be searched to determine if the event is being
tracked. A list may also contain information having the granu-

US 9,253,283 B2

23

larity of listing specific records that are to be tracked (e.g., if
a tenant can specify the particular records to be tracked, as
opposed to just type).

As an example, processor 417 may obtain an identifier
associated with record 425 (e.g., obtained from request 1 or
database 412), potentially along with a tenant identifier, and
cross-reference the identifier with a list of records for which
feed tracked updates are to be created. Specifically, the record
identifier can be used to determine the record type and a list of
tracked types can be searched for a match. The specific record
may also be checked if such individual record tracking was
enabled. The name of the field to be changed can also be used
to search a list of tracking-enabled fields. Other criteria
besides field and events can be used to determine whether a
feed tracked update is created, e.g., type of change in the field.
If a feed tracked update is to be generated, processor 417 can
then generate the feed tracked update.

In some implementations, a feed tracked update is created
dynamically when a feed (e.g., the entity feed of record 425)
is requested. Thus, in one implementation, a feed tracked
update can be created when a user requests the entity feed for
record 425. In this implementation, the feed tracked update
may be created (e.g., assembled), including re-created, each
time the entity feed is to be displayed to any user. In one
implementation, one or more event history tables can keep
track of previous events so that the feed tracked update can be
re-created.

In another implementation, a feed tracked update can be
created at the time the event occurs, and the feed tracked
update can be added to a list of feed items. The list of feed
items may be specific to record 425, or may be an aggregate
of feed items including feed items for many records. Such an
aggregate list can include a record identifier so that the feed
items for the entity feed of record 425 can be easily retrieved.
For example, after the feed tracked update has been gener-
ated, processor 417 can add the new feed tracked update 3 to
a feed of record 425. As mentioned above, in one implemen-
tation, the feed can be stored in a field (e.g., as a child object)
of record 425. In another implementation, the feed can be
stored in another location or in another database, but with a
link (e.g., a connecting identifier) to record 425. The feed can
be organized in various ways, e.g., as a linked list, an array, or
other data structure.

A second user 430 can access the new feed tracked update
3 in various ways. In one implementation, second user 430
can send a request 4 for the record feed. For example, second
user 430 can access a home page (detail page) of the record
425 (e.g., with a query or by browsing), and the feed can be
obtained through a tab, button, or other activation object on
the page. The feed can be displayed on the screen or down-
loaded.

In another implementation, processor 417 can add the new
feed tracked update 5 to a feed (e.g., anews feed) of a user that
is following record 425. In one implementation, processor
417 can determine each of the followers of record 425 by
accessing a list of the users that have been registered as
followers. This determination can be done for each new event
(e.g., update 1). In another implementation, processor 417
can poll (e.g., with a query) the records that second user 430
is following to determine when new feed tracked updates (or
other feed items) are available. Processor 417 can use a fol-
lower profile 435 of second user 430 that can contain a list of
the records that the second user 430 is following. Such a list
can be contained in other parts of the database as well. Second
user 430 can then send a request 6 to his/her profile 435 to
obtain a feed, which contains the new feed tracked update.

25

40

45

24

The user’s profile 435 can be stored in a profile database 414,
which can be the same or different than database 412.

In some implementations, a user can define a news feed to
include new feed tracked updates from various records, which
may be limited to a maximum number. In one implementa-
tion, each user has one news feed. In another implementation,
the follower profile 435 can include the specifications of each
of the records to be followed (with the criteria for what feed
tracked updates are to be provided and how they are dis-
played), as well as the feed.

Some implementations can provide various types of record
(entity) feeds. Entity Feeds can exist for record types like
account, opportunity, case, and contact. An entity feed cantell
a user about the actions that people have taken on that par-
ticular record or on one its related records. The entity feed can
include who made the action, which field was changed, and
the old and new values. In one implementation, entity feeds
can exist on all supported records as a list that is linked to the
specific record. For example, a feed could be stored in a field
that allows lists (e.g., linked lists) or as a child object.

IV. Tracking Actions of a User

In addition to knowing about events associated with a
particular record, it can be helpful for a user to know what a
particular user is doing. In particular, it might be nice to know
what the user is doing without the user having to generate the
feed tracked update (e.g., a user submitting a synopsis of what
the user has done). Accordingly, implementations can auto-
matically track actions of a user that trigger events, and feed
tracked updates can be generated for certain events.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations. Method 500 may be
performed in addition to method 300. The operations of
method 300, including order of blocks, can be performed in
conjunction with method 500 and other methods described
herein. Thus, a feed can be composed of changes to a record
and actions of users.

In block 510, a database system (e.g., 16 of FIGS. 1A and
1B) identifies an action of a first user. In one implementation,
the action triggers an event, and the event is identified. For
example, the action of a user requesting an update to a record
can be identified, where the event is receiving a request or is
the resulting update of a record. The action may thus be
defined by the resulting event. In another implementation,
only certain types of actions (events) are identified. Which
actions are identified can be set as a default or can be config-
urable by a tenant, or even configurable at a user level. In this
way, processing effort can be reduced since only some actions
are identified.

In block 520, it is determined whether the event qualifies
for afeed tracked update. In one implementation, a predefined
list of events (e.g., as mentioned herein) can be created so that
only certain actions are identified. In one implementation, an
administrator (or other user) of a tenant can specify the type of
actions (events) for which a feed tracked update is to be
generated. This block may also be performed for method 300.

In block 530, a feed tracked update is generated about the
action. In an example where the action is an update of a
record, the feed tracked update can be similar or the same as
the feed tracked update created for the record. The description
can be altered though to focus on the user as opposed to the
record. For example, “John D. has closed a new opportunity
for account XYZ” as opposed to “an opportunity has been
closed for account XYZ.’

In block 540, the feed tracked update is added to a profile
feed of the first user when, e.g., the user clicks on a tab to open
a page in a browser program displaying the feed. In one

US 9,253,283 B2

25

implementation, a feed for a particular user can be accessed
on a page of the user’s profile, in a similar manner as a record
feed can be accessed on a detail page of the record. In another
implementation, the first user may not have a profile feed and
the feed tracked update may just be stored temporarily before
proceeding. A profile feed of a user can be stored associated
with the user’s profile. This profile feed can be added to a
news feed of another user.

In block 550, followers of the first user are identified. In
one implementation, a user can specity which type of actions
other users can follow. Similarly, in one implementation, a
follower can select what actions by a user the follower wants
to follow. In an implementation where different followers
follow different types of actions, which users are followers of
that user and the particular action can be identified, e.g., using
various lists that track what actions and criteria are being
followed by a particular user. In various implementations, the
followers of'the first user can be identified in a similar manner
as followers of a record, as described above for block 350.

In block 560, the feed tracked update is added to a news
feed of each follower of the first user when, e.g., the follower
clicks on a tab to open a page displaying the news feed. The
feed tracked update can be added in a similar manner as the
feed items for a record feed. The news feed can contain feed
tracked updates both about users and records. In another
implementation, a user can specify what kind of feed tracked
updates to receive about a user that the user is following. For
example, a user could specify feed tracked updates with par-
ticular keywords, of certain types of records, of records
owned or created by certain users, particular fields, and other
criteria as mentioned herein.

Inblock 570, a follower accesses the news feed and sees the
feed tracked update. In one implementation, the user has just
one news feed for all of the records that the user is following.
Inanother implementation, a user can access his/her own feed
(i.e. feed about his/her own actions) by selecting a particular
tab or other object on a page of an interface to the database
system. Thus, a feed can include feed tracked updates about
what other users are doing in the database system. When a
user becomes aware of a relevant action of another user, the
user can contact the co-worker, thereby fostering teamwork.

V. Generation of a Feed Tracked Update

As described above, some implementations can generate
text describing events (e.g., updates) that have occurred for a
record and actions by a user that trigger an event. A database
system can be configured to generate the feed tracked updates
for various events in various ways.

In one implementation, the feed tracked update is a gram-
matical sentence, thereby being easily understandable by a
person. In another implementation, the feed tracked update
provides detailed information about the update. In various
examples, an old value and new value for a field may be
included in the feed tracked update, an action for the update
may be provided (e.g., submitted for approval), and the names
of particular users that are responsible for replying or acting
on the feed tracked update may be also provided. The feed
tracked update can also have a level of importance based on
settings chosen by the administrator, a particular user request-
ing an update, or by a following user who is to receive the feed
tracked update, which fields is updated, a percentage of the
change in a field, the type of event, or any combination of
these factors.

The system may have a set of heuristics for creating a feed
tracked update from the event (e.g., a request to update). For
example, the subject may be the user, the record, or a field
being added or changed. The verb can be based on the action
requested by the user, which can be selected from a list of

20

40

45

26

verbs (which may be provided as defaults or input by an
administrator of a tenant). In one implementation, feed
tracked updates can be generic containers with formatting
restrictions,

As an example of a feed tracked update for a creation of a
new record, “Mark Abramowitz created a new Opportunity
for IBM-20,000 laptops with Amount as $3.5M and Sam
Palmisano as Decision Maker.” This event can be posted to
the profile feed for Mark Abramowitz and the entity feed for
record of Opportunity for IBM-20,000 laptops. The pattern
can be given by (AgentFullName) created a new (Object-
Name)(RecordName) with [(FieldName) as (FieldValue)
[,/and]]* [[added/changed/removed] (RelatedListRecord-
Name) [as/to/as](RelatedListRecordValue) [,/and]]*. Similar
patterns can be formed for a changed field (standard or cus-
tom) and an added child record to a related list.

V1. Tracking Commentary from or About a User

Some implementations can also have a user submit text,
instead of the database system generating a feed tracked
update. As the text is submitted as part or all of a message by
auser, the text can be about any topic. Thus, more information
than just actions of a user and events of a record can be
conveyed. In one implementation, the messages can be used
to ask a question about a particular record, and users follow-
ing the record can provide comments and responses.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations. In one implementation, method 600 can be
combined with methods 300 and 500. In one aspect, a mes-
sage can be associated with the first user when the first user
creates the message (e.g., a post or comment about a record or
another user). In another aspect, a message can be associated
with the first user when the message is about the first user
(e.g., posted by another user on the first user’s profile feed).

Inblock 610, the database system receives a message (e.g.,
a post or status update) associated with a first user. The mes-
sage (e.g., a post or status update) can contain text and/or
multimedia content submitted by another user or by the first
user. In one implementation, a post is for a section of the first
user’s profile page where any user can add a post, and where
multiple posts can exist. Thus, a post can appear on the first
user’s profile page and can be viewed when the first user’s
profile is visited. For a message about a record, the post can
appear on a detail page of a record. Note the message can
appear in other feeds as well. In another implementation, a
status update about the first user can only be added by the first
user. In one implementation, a user can only have one status
message.

In block 620, the message is added to a table, as described
in greater detail below. When the feed is opened, a query
filters one or more tables to identify the first user, identify
other persons that the user is following, and retrieve the
message. Messages and record updates are presented in a
combined list as the feed. In this way, in one implementation,
the message can be added to a profile feed of the first user,
which is associated (e.g., as a related list) with the first user’s
profile. In one implementation, the posts are listed indefi-
nitely. In another implementation, only the most recent posts
(e.g., last 50) are kept in the profile feed. Such implementa-
tions can also be employed with feed tracked updates. In yet
another implementation, the message can be added to a pro-
file of the user adding the message.

In block 630, the database system identifies followers of
the first user. In one implementation, the database system can
identify the followers as described above for method 500. In
various implementations, a follower can select to follow a

US 9,253,283 B2

27

feed about the actions of the first user, messages about the first
user, or both (potentially in a same feed).

In block 640, the message is added to a news feed of each
follower. In one implementation, the message is only added to
a news feed of a particular follower if the message matches
some criteria, e.g., the message includes a particular keyword
or other criteria. In another implementation, a message can be
deleted by the user who created the message. In one imple-
mentation, once deleted by the author, the message is deleted
from all feeds to which the message had been added.

Inblock 650, the follower accesses a news feed and sees the
message. For example, the follower can access a news feed on
the follower’s own profile page. As another example, the
follower can have a news feed sent to his/her own desktop
without having to first go to a home page.

In block 660, the database system receives a comment
about the message. The database system can add the comment
to a feed of the same first user, much as the original message
was added. In one implementation, the comment can also be
added to a feed of a second user who added the comment. In
one implementation, users can also reply to the comment. In
another implementation, users can add comments to a feed
tracked update, and further comments can be associated with
the feed tracked update. In yet another implementation, mak-
ing a comment or message is not an action to which a feed
tracked update is created. Thus, the message may be the only
feed item created from such an action.

In one implementation, if a feed tracked update or post is
deleted, its corresponding comments are deleted as well. In
another implementation, new comments on a feed tracked
update or post do not update the feed tracked update times-
tamp. Also, the feed tracked update or post can continue to be
shown in a feed (profile feed, record feed, or news feed) if it
has had a comment within a specified timeframe (e.g., within
the last week). Otherwise, the feed tracked update or post can
be removed in an implementation.

In some implementations, all or most feed tracked updates
can be commented on. In other implementations, feed tracked
updates for certain records (e.g., cases or ideas) are not com-
mentable. In various implementations, comments can be
made for any one or more records of opportunities, accounts,
contacts, leads, and custom objects.

In block 670, the comment is added to a news feed of each
follower. In one implementation, a user can make the com-
ment within the user’s news feed. Such a comment can propa-
gate to the appropriate profile feed or record feed, and then to
the news feeds of the following users. Thus, feeds can include
what people are saying, as well as what they are doing. In one
aspect, feeds are a way to stay up-to-date (e.g., on users,
opportunities, etc.) as well as an opportunity to reach out to
co-workers/partners and engage them around common goals.

In some implementations, users can rate feed tracked
updates or messages (including comments). A user can
choose to prioritize a display of a feed so that higher rated
feed items show up higher on a display. For example, in an
implementation where comments are answers to a specific
question, users can rate the different status posts so that a best
answer can be identified. As another example, users are able
to quickly identify feed items that are most important as those
feed items can be displayed at a top of a list. The order of the
feed items can be based on an importance level (which can be
determined by the database system using various factors,
some of which are mentioned herein) and based on a rating
from users. In one implementation, the rating is on a scale that
includes at least 3 values. In another implementation, the
rating is based on a binary scale.

10

15

20

25

30

35

40

45

50

55

60

65

28

Besides a profile for a user, a group can also be created. In
various implementations, the group can be created based on
certain attributes that are common to the users, can be created
by inviting users, and/or can be created by receiving requests
to join from a user. In one implementation, a group feed can
be created, with messages being added to the group feed when
someone submits a message to the group as a whole through
a suitable user interface. For example, a group page may have
a group feed or a section within the feed for posts, and a user
can submit a post through a publisher component in the user
interface by clicking on a “Share” or similar button. In
another implementation, a message can be added to a group
feed when the message is submitted about any one of the
members. Also, a group feed can include feed tracked updates
about actions of the group as a whole (e.g., when an admin-
istrator changes data in a group profile or a record owned by
the group), or about actions of an individual member.

FIG. 7 shows an example of a group feed on a group page
according to some implementations. As shown, a feed item
710 shows that a user has posted a document to the group
object. The text “Bill Bauer has posted the document Com-
petitive Insights” can be generated by the database system in
a similar manner as feed tracked updates about a record being
changed. A feed item 720 shows a post to the group, along
with comments 730 from Ella Johnson, James Saxon, Mary
Moore and Bill Bauer.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations. Feed item 810 shows a feed tracked update based
on the event of submitting a discount for approval. Other feed
items show posts, e.g., from Bill Bauer, that are made to the
record and comments, e.g., from Erica Law and Jake Rapp,
that are made on the posts.

VII. Infrastructure for a Feed

A. Tables Used to Create a Feed

FIG. 9A shows an example of a plurality of feed tracked
update tables that may be used in tracking events and creating
feeds according to some implementations. The tables of FIG.
9 A may have entries added, or potentially removed, as part of
tracking events in the database from which feed items are
creates or that correspond to feed items. In one implementa-
tion, each tenant has its own set of tables that are created
based on criteria provided by the tenant.

An event history table 910 can provide a feed tracked
update of events from which feed items are created. In one
aspect, the events are for objects that are being tracked. Thus,
table 910 can store and change feed tracked updates for feeds,
and the changes can be persisted. In various implementations,
event history table 910 can have columns of event ID 911,
object ID 912 (also called parent ID), and created by 1D 913.
The event ID 911 can uniquely identify a particular event and
can start at 1 (or other number or value).

Each new event can be added chronologically with a new
event ID, which may be incremented in order. An object ID
912 can be used to track which record or user’s profile is being
changed. For example, the object ID can correspond to the
record whose field is being changed or the user whose feed is
receiving a post. The created by ID 913 can track the user who
is performing the action that results in the event, e.g., the user
that is changing the field or that is posting a message to the
profile of another user.

In one implementation, a name of an event can also be
stored in table 910. In one implementation, a tenant can
specify events that they want tracked. In an implementation,
event history table 910 can include the name of the field that
changed (e.g., old and new values). In another implementa-
tion, the name of the field, and the values, are stored in a

US 9,253,283 B2

29

separate table. Other information about an event (e.g., text of
comment, feed tracked update, post or status update) can be
stored in event history table 910, or in other tables, as is now
described.

A field change table 920 can provide a feed tracked update
of the changes to the fields. The columns of table 920 can
include an event ID 921 (which correlates to the event ID
911), an old value 922 for the field, and the new value 923 for
the field. In one implementation, if an event changes more
than one field value, then there can be an entry for each field
changed. As shown, event ID 921 has two entries for event
E37.

A comment table 930 can provide a feed tracked update of
the comments made regarding an event, e.g., a comment on a
post or a change of a field value. The columns oftable 930 can
include an event ID 921 (which correlates to the event ID
911), the comment column 932 that stores the text of the
comment, and the time/date 933 of the comment. In one
implementation, there can be multiple comments for each
event. As shown, event ID 921 has two entries for event E37.

A user subscription table 940 can provide a list of the
objects being followed (subscribed to) by a user. In one imple-
mentation, each entry has a user ID 941 of the user doing the
following and one object ID 942 corresponding to the object
being followed. In one implementation, the object being fol-
lowed can be a record or a user. As shown, the user with 1D
U819 is following object IDs 0615 and 0489. [fuser U819 is
following other objects, then additional entries may exist for
user U819. Also as shown, user U719 is also following object
0615. The user subscription table 940 can be updated when a
user adds or deletes an object that is being followed.

In one implementation, regarding a profile feed and a news
feed, these are read-only views on the event history table 910
specialized for these feed types. Conceptually the news feed
can be a semi join between the user subscription table 940 and
the event history table 910 on the object IDs 912 and 942 for
the user. In one aspect, these entities can have polymorphic
parents and can be subject to a number of restrictions detailed
herein, e.g., to limit the cost of sharing checks.

In one implementation, entity feeds are modeled in the API
as a feed associate entity (e.g., AccountFeed, CaseFeed, etc).
A feed associate entity includes information composed of
events (e.g., event IDs) for only one particular record type.
Such a list can limit the query (and sharing checks) to a
specific record type. In one aspect, this structuring of the
entity feeds can make the query run faster. For example, a
request for a feed of a particular account can include the
record type of account. In one implementation, an account
feed table can then be searched, where the table has account
record IDs and corresponding event IDs or pointers to par-
ticular event entries in event history table 910. Since the
account feed table only contains some of the records (not all),
the query can run faster.

In one implementation, there may be objects with no events
listed in the event history table 910, even though the record is
being tracked. In this case, the database service can return a
result indicating that no feed items exist.

A feed item can represent an individual field change of a
record, creation and deletion of a record, or other events being
tracked for a record or auser. In one implementation, all of the
feed items in a single transaction (event) can be grouped
together and have the same event ID. A single transaction
relates to the operations that can be performed in a single
communication with the database. In another implementation
where a feed is an object of the database, a feed item can be a
child of a profile feed, news feed, or entity feed. If a feed item

10

15

20

25

30

35

40

45

50

55

60

65

30
is added to multiple feeds, the feed item can be replicated as
a child of each feed to which the feed item is added.

In some implementations, a comment exists as an item that
depends from feed tracked updates, posts, status updates, and
other items that are independent of each other. Thus, a feed
comment object can exist as a child object of a feed item
object. For example, comment table 930 can be considered a
child table of event history table 910. In one implementation,
a feed comment can be a child of a profile feed, news feed, or
entity feed that is separate from other feed items.

In one implementation, viewing a feed pulls up the most
recent messages or feed tracked updates (e.g., 25) and
searches the most recent (e.g., 4) comments for each feed
item. The comments can be identified via the comment table
930. In one implementation, a user can request to see more
comments, e.g., by selecting a see more link.

After feed items have been generated, they can be filtered
so that only certain feed items are displayed, which may be
tailored to a specific tenant and/or user. In one implementa-
tion, a user can specify changes to a field that meet certain
criteria for the feed item to show up in a feed displayed to the
user, e.g., a news feed or even an entity feed displayed directly
to the user. In one implementation, the criteria can be com-
bined with other factors (e.g., number of feed items in the
feed) to determine which feed items to display. For instance,
if a small number of feed items exist (e.g., below a threshold),
then all of the feed items may be displayed.

In one implementation, a user can specify the criteria via a
query on the feed items in his/her new feed, and thus a feed
may only return objects of a certain type, certain types of
events, feed tracked updates about certain fields, and other
criteria mentioned herein. Messages can also be filtered
according to some criteria, which may be specified in a query.
Such an added query can be added onto a standard query that
is used to create the news feed for a user. A first user could
specify the users and records that the first user is following in
this manner, as well as identify the specific feed items that the
first user wants to follow. The query could be created through
a graphical interface or added by a user directly in a query
language. Other criteria could include receiving only posts
directed to a particular user or record, as opposed to other feed
items.

In one implementation, a user can access a feed of a record
if the user can access the record. The security rules for deter-
mining whether a user has access to arecord can be performed
in a variety of ways, some of which are described in com-
monly assigned U.S. Pat. No. 8,095,531, titted METHODS
AND SYSTEMS FOR CONTROLLING ACCESS TO CUS-
TOM OBJECTS IN A DATABASE, by Weissman et al.,
issued on Jan. 10, 2012, and hereby incorporated by reference
in its entirety and for all purposes.

In one implementation, a user can edit a feed of a record if
the user has access to the record, e.g., deleting or editing a
feed item. In another implementation, a user (besides an
administrator) cannot edit a feed item, except for performing
an action from which a feed item can be created. In one
example, auser is first has to have access to a particular record
and field for a feed item to be created based on an action of the
user. In this case, an administrator can be considered to be a
user with MODIFY-ALL-DATA security level. In yet another
implementation, a user who created the record can edit the
feed.

Inone implementation, the text of posts are stored in a child
table (post table 950), which can be cross-referenced with
event history table 910. Post table 950 can include event ID
951 (to cross-reference with event ID 911), post text 952 to

US 9,253,283 B2

31

store the text of the post, and time/date 953. An entry in post
table 950 can be considered a feed post object.

VIII. Subscribing to Users and Records to Follow

As described above, a user can follow users, groups, and
records. Implementations can provide mechanisms for a user
to manage which users, groups, and records that the user is
currently following. In one implementation, a user can be
limited to the number of users and records (collectively or
separately) that the user can follow. For example, a user may
be restricted to only following 10 users and 15 records, or as
another example, 25 total. Alternatively, the user may be
permitted to follow more or less users.

In one implementation, a user can go to a page of a record
and then select to follow that object (e.g., with a button
marked “follow” or “join”). Inanother implementation, a user
can search for a record and have the matching records show
up in a list. The search can include criteria of records that the
user might want to follow. Such criteria can include the
owner, the creation date, last comment date, and numerical
values of particular fields (e.g., an opportunity with a value of
more than $10,000).

A follow button (or other activation object) can then reside
next to each record in the resulting list, and the follow button
can be selected to start following the record. Similarly, a user
can go to a profile page of a user and select to follow the user,
or a search for users can provide a list, where one or more
users can be selected for following from the list. The selec-
tions of subscribing and unsubscribing can add and delete
rows in table 920.

In some implementations, a subscription center acts as a
centralized place in a database application (e.g., application
platform 18) to manage which records a user subscribes to,
and which field updates the user wants to see in feed tracked
updates. The subscription center can use a subscription table
to keep track of the subscriptions of various users. In one
implementation, the subscription center shows a list of all the
items (users and records) a user is subscribed to. In another
implementation, a user can unsubscribe to subscribed objects
from the subscription center.

A. Automatic Subscription

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions. Any of the following blocks can be performed wholly or
partially with the database system, and in particular by one or
more processor of the database system.

In block 901, one or more properties of an object stored in
the database system are received. The properties can be
received from administrators of the database system, or from
users of the database system (which may be an administrator
of'a customer organization). The properties can be records or
users, and can include any of the fields of the object that are
stored in the database system. Examples of properties of a
record include: an owner of the record, a user that converted
the record from one record type to another record type,
whether the first user has viewed the record, and a time the
first user viewed the record. Examples of properties of a user
include: which organization (tenant) the user is associated
with, the second user’s position in the same organization, and
which other users the user had emailed or worked with on
projects.

In block 902, the database system receives one or more
criteria about which users are to automatically follow the
object. Examples of the criteria can include: an owner or
creator of a record is to follow the record, subordinates of an
owner or creator of a record are to follow the record, and a
user is to follow his/her manager, the user’s peers, other users

10

15

20

25

30

35

40

45

50

55

60

65

32

in the same business group as the user, and other users that the
user has emailed or worked with on a project. The criteria can
be specific to a user or group of users (e.g., users of a tenant).

In block 903, the database system determines whether the
one or more properties of the object satisfy the one or more
criteria for a first user. In one implementation, this determi-
nation can occur by first obtaining the criteria and then deter-
mining objects that satisfy the criteria. The determination can
occur periodically, at time of creation of an object, or at other
times.

In block 904, if the criteria are satisfied, the object is
associated with the first user. The association can be in a list
that stores information as to what objects are being followed
by the first user. User subscription table 940 is an example of
such a list. In one implementation, the one or more criteria are
satisfied if one property satisfies at least one criterion. Thus, if
the criteria are that a user follows his’her manager and the
object is the user’s manager, then the first user will follow the
object.

In one implementation, a user can also be automatically
unsubscribed, e.g., if a certain action happens. The action
could be a change in the user’s position within the organiza-
tion, e.g., a demotion or becoming a contractor. As another
example, if a case gets closed, then users following the case
may be automatically unsubscribed.

IX. Adding Items to a Feed

As described above, a feed includes feed items, which
include feed tracked updates and messages, as defined herein.
Various feeds can be generated. For example, a feed can be
generated about a record or about a user. Then, users can view
these feeds. A user can separately view a feed of a record or
user, e.g., by going to a home page for the user or the record.
As described above, a user can also follow another user or
record and receive the feed items of those feeds through a
separate feed application. The feed application can provide
each of the feeds that a user is following and, in some
examples, can combine various feeds in a single social net-
work feed.

A feed generator can refer to any software program running
on a processor or a dedicated processor (or combination
thereof) that can generate feed items (e.g., feed tracked
updates or messages) and combine them into a feed. In one
implementation, the feed generator can generate a feed item
by receiving a feed tracked update or message, identifying
what feeds the item should be added to, and adding the feed.
Adding the feed can include adding additional information
(metadata) to the feed tracked update or message (e.g., adding
a document, sender of message, a determined importance,
etc.). The feed generator can also check to make sure that no
one sees feed tracked updates for data that they don’t have
access 1o see (e.g., according to sharing rules). A feed gen-
erator can run at various times to pre-compute feeds or to
compute them dynamically, or combinations thereof.

In one implementation, processor 417 in FIG. 4 can iden-
tify an event that meets criteria for a feed tracked update, and
then generate the feed tracked update. Processor 417 can also
identify a message. For example, an application interface can
have certain mechanisms for submitting a message (e.g.,
“submit” buttons on a profile page, detail page of a record,
“comment” button on post), and use of these mechanisms can
be used to identity a message to be added to a table used to
create a feed or added directly to a list of feed items ready for
display.

A. Adding Items to a Pre-Computed Feed

In some implementations, a feed of feed items is created
before a user requests the feed. Such an implementation can
run fast, but have high overall costs for storage. In one imple-

US 9,253,283 B2

33

mentation, once a profile feed or a record feed has been
created, a feed item (messages and feed tracked updates) can
be added to the feed. The feed can exist in the database system
in avariety of ways, such as a related list. The feed can include
mechanisms to remove items as well as add them.

As described above, a news feed can be an aggregated feed
of all the record feeds and profile feeds to which a user has
subscribed. The news feed can be provided on the home page
of'the subscribing user. Therefore, a news feed can be created
by and exist for a particular user. For example, a user can
subscribe to receive entity feeds of certain records that are of
interest to the user, and to receive profile feeds of people that
are of interest (e.g., people on a same team, that work for the
user, are a boss of the user, etc.). A news feed can tell a user
about all the actions across all the records (and people) whom
have explicitly (or implicitly) been subscribed to via the sub-
scriptions center (described above).

In one implementation, only one instance of each feed
tracked update is shown on a user’s news feed, even if the feed
tracked update is published in multiple entities to which the
user is subscribed. In one aspect, there may be delays in
publishing news articles. For example, the delay may be due
to queued up messages for asynchronous entity feed tracked
update persistence. Different feeds may have different delays
(e.g., delay for new feeds, but none of profile and entity
feeds). In another implementation, certain feed tracked
updates regarding a subscribed profile feed or an entity feed
are not shown because the user is not allowed access, e.g., due
to sharing rules (which restrict which users can see which
data). Also, in one implementation, data of the record that has
been updated (which includes creation) can be provided in the
feed (e.g., a file or updated value of a feed can be added as a
flash rendition).

B. Dynamically Generating Feeds

Insomeimplementations, a feed generator can generate the
feed items dynamically when a user requests to see a particu-
lar feed, e.g., a profile feed, entity feed, or the user’s news
feed. In one implementation, the most recent feed items (e.g.,
top 50) are generated first. In one aspect, the other feed items
can be generated as a background process, e.g., not synchro-
nously with the request to view the feed. However, since the
background process is likely to complete before a user gets to
the next 50 feed items, the feed generation may appear syn-
chronous. In another aspect, the most recent feed items may
or may not include comments, e.g., that are tied to feed
tracked updates or posts.

In one implementation, the feed generator can query the
appropriate subset of tables shown in FIG. 9A and/or other
tables as necessary, to generate the feed items for display. For
example, the feed generator can query the event history table
910 for the updates that occurred for a particular record. The
1D of the particular record can be matched against the ID of
the record. In one implementation, changes to a whole set of
records can be stored in one table. The feed generator can also
query for status updates, posts, and comments, each of which
can be stored in different parts of a record or in separate
tables, as shown in FIG. 9A. What gets recorded in the entity
event history table (as well as what is displayed) can be
controlled by a feed settings page in setup, which can be
configurable by an administrator and can be the same for the
entire organization, as is described above for custom feeds.

In one implementation, there can be two feed generators.
For example, one generator can generate the record and pro-
file feeds and another generator can generate news feeds. For
the former, the feed generator can query identifiers of the
record or the user profile. For the latter, the news feed gen-
erator can query the subscribed profile feeds and record feeds,

10

15

20

25

30

35

40

45

50

55

60

65

34

e.g., user subscription table 940. In one implementation, the
feed generator looks at a person’s subscription center to
decide which feeds to query for and return a list of feed items
for the user. The list can be de-duped, e.g., by looking at the
event number and values for the respective table, such as field
name or ID, comment ID, or other information.

C. Adding Information to Feed Tracked Update Tables

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations. In one implementa-
tion, some of the blocks may be performed regardless of
whether a specific event or part of an event (e.g., only one field
of an update is being tracked) is being tracked. In various
implementations, a processor or set of processors (hardwired
or programmed) can perform method 1000 and any other
method described herein.

In block 1010, data indicative of an event is received. The
data may have a particular identifier that specifies the event.
For example, there may be a particular identifier for a field
update. In another implementation, the transaction may be
investigated for keywords identifying the event (e.g., terms in
a query indicating a close, change field, or create operations).

In block 1020, it is determined whether the event is being
tracked for inclusion into feed tracked update tables. The
determination of what is being tracked can be based on a
tenant’s configuration as described above. In one aspect, the
event has an actor (person performing an event), and an object
of'the event (e.g., record or user profile being changed).

In block 1030, the event is written to an event history table
(e.g., table 910). In one implementation, this feed tracking
operation can be performed in the same transaction that per-
forms a save operation for updating a record. In another
implementation, a transaction includes at least two roundtrip
database operations, with one roundtrip being the database
save (write), and the second database operation being the
saving of the update in the feed tracked update table. In one
implementation, the event history table is chronological. In
another implementation, if user A posts on user B’s profile,
then user A is under the “created by” 913 and user B is under
the object ID 912.

In block 1040, a field change table (e.g., field change table
920) can be updated with an entry having the event identifier
and fields that were changed in the update. In one implemen-
tation, the field change table is a child table of the event
history table. This table can include information about each of
the fields that are changed. For example, for an event that
changes the name and balance for an account record, an entry
can have the event identifier, the old and new name, and the
old and new balance. Alternatively, each field change can be
in a different row with the same event identifier. The field
name or ID can also be included to determine which field the
values are associated.

In block 1050, when the event is a post, a post table (e.g.,
post table 950) can be updated with an entry having the event
identifier and text of the post. In one implementation, the field
change table is a child table of the event history table. In
another implementation, the text can be identified in the trans-
action (e.g., a query command), stripped out, and put into the
entry at the appropriate column. The various tables described
herein can be combined or separated in various ways. For
example, the post table and the field change table may be part
of the same table or distinct tables, or may include overlap-
ping portions of data.

In block 1060, a comment is received for an event and the
comment is added to a comment table (e.g., comment table
930). The comment could be for a post or an update of a
record, from which a feed tracked update can be generated for

US 9,253,283 B2

35

display. In one implementation, the text can be identified in
the transaction (e.g., a query command), stripped out, and put
into the entry at the appropriate column.

D. Reading Information from Feed Tracked Update Tables

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations. In one
implementation, the feed item may be read as part of creating
a feed for a record.

In block 1110, a query is received for an events history
table (e.g., event history table 910) for events related to a
particular record. In one implementation, the query includes
an identifier of the record for which the feed is being
requested. In various implementations, the query may be
initiated from a detail page of the record, a home page of a
user requesting the record feed, or from a listing of different
records (e.g., obtained from a search or from browsing).

In block 1120, the user’s security level can be checked to
determine if the user can view the record feed. Typically, a
user can view a record feed, if the user can access the record.
This security check can be performed in various ways. In one
implementation, a first table is checked to see if the user has
a classification (e.g., a security level that allows him to view
records of the given type). In another implementation, a sec-
ond table is checked to see if the user is allowed to see the
specific record. The first table can be checked before the
second table, and both tables can be different sections of a
same table. If the user has requested the feed from the detail
page of the record, one implementation can skip the security
level check for the record since the check was already done
when the user requested to view the detail page.

In one implementation, a security check is determined
upon each request to view the record feed. Thus, whether or
not a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a
record or a news feed of all the objects the user is following.
In this manner, if a user’s security changes, a feed automati-
cally adapts to the user’s security level when it is changed. In
another implementation, a feed can be computed before being
requested and a subsequent security check can be made to
determine whether the person still has access right to view the
feed items. The security (access) check may be at the field
level, as well as at the record level.

Inblock 1130, if the user can access the record, a field level
security table can be checked to determine whether the user
can see particular fields. In one implementation, only those
fields are displayed to the user. Alternatively, a subset of those
the user has access to is displayed. The field level security
check may optionally be performed at the same time and even
using the same operation as the record level check. In addi-
tion, the record type check may also be performed at this time.
If the user can only see certain fields, then any feed items
related to those fields (e.g., as determined from field change
table 920) can be removed from the feed being displayed.

In block 1140, the feed items that the user has access to are
displayed. In one implementation, a predetermined number
(e.g., 20) of feed items are displayed at a time. The method
can display the first 20 feed items that are found to be read-
able, and then determine others while the user is viewing the
first 20. In another implementation, the other feed items are
not determined until the user requests to see them, e.g., by
activating a see more link.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations. In one implemen-
tation, the query includes an identifier of the user profile feed
that is being requested. Certain blocks may be optional, as is

10

15

20

25

30

35

40

45

50

55

60

65

36

also true for other methods described herein. For example,
security checks may not be performed.

In block 1210, a query is directed to an event history table
(e.g., event history table 910) for events having a first user as
the actor of the event (e.g., creation of an account) or on which
the event occurred (e.g., a postto the user’s profile). In various
implementations, the query may be initiated by a second user
from the user’s profile page, a home page of a user requesting
the profile feed (e.g., from a list of users being followed), or
from a listing of different users (e.g., obtained from a search
or from browsing). Various mechanisms for determining
aspects of events and obtaining information from tables can
be the same across any of the methods described herein.

In block 1220, a security check may also be performed on
whether the second user can see the first user’s profile. In one
implementation any user can see the profile of another user of
the same tenant, and block 1220 is optional.

In block 1230, a security (access) check can be performed
for the feed tracked updates based on record types, records,
and/or fields, as well security checks for messages. In one
implementation, only the feed tracked updates related to
records that the person has updated are the ones that need
security check as the feed items about the user are readable by
any user of the same tenant. Users of other tenants are not
navigable, and thus security can be enforced at a tenant level.
In another implementation, messages can be checked for
keywords or links to a record or field that the second user does
not have access.

As users can have different security classifications, it is
important that a user with a low-level security cannot see
changes to records that have been performed by a user with
high-level security. In one implementation, each feed item
can be checked and then the viewable results displayed, but
this can be inefficient. For example, such a security check
may take a long time, and the second user would like to get
some results sooner rather than later. The following blocks
illustrate one implementation of how security might be
checked for a first user that has a lot of feed items, but the
second user cannot see most of them. This implementation
can be used for all situations, but can be effective in the above
situation.

In block 1231, a predetermined number of entries are
retrieved from the event history table (e.g., starting from the
most recent, which may be determined from the event iden-
tifier). The retrieved entries may just be ones that match the
user 1D of the query. In one implementation, entries are
checked to find the entries that are associated with the user
and with a record (i.e. not just posts to the user account). In
another implementation, those entries associated with the
user are allowed to be viewed, e.g., because the second user
can see the profile of the first user as determined in block
1220.

In block 1232, the record identifiers are organized by type
and the type is checked on whether the second user can see the
record types. Other checks such as whether a record was
manually shared (e.g., by the owner) can also be performed.
In one implementation, the queries for the different types can
be done in parallel.

Inblock 1233, if a user can see the record type, then a check
can be performed on the specific record. In one implementa-
tion, if a user can see a record type, then the user can see all of
the records of that type, and so this block can be skipped. In
another implementation, the sharing model can account for
whether a user below the second user (e.g., the second user is
amanager) can see the record. In such an implementation, the

US 9,253,283 B2

37

second user may see such a record. In one implementation, if
a user cannot see a specific record, then comments on that
record are also not viewable.

In block 1234, field level sharing rules can be used to
determine whether the second user can see information about
an update or value of certain fields. In one implementation,
messages can be analyzed to determine if reference to a
particular field name is made. If so, then field level security
can be applied to the messages.

Inblock 1280, blocks 1231-1234 are repeated until a stop-
ping criterion is met. In one implementation, the stopping
criteria may be when a maximum number (e.g., 100) of
entries that are viewable have been identified. In another
implementation, the stopping criteria can be that a maximum
number (e.g., 500) of entries from the entity feed tracked
update table have been analyzed, regardless of whether the
entries are viewable or not.

In one implementation, a news feed can be generated as a
combination of the profile feeds and the entity feeds, e.g., as
described above. In one implementation, a list of records and
user profiles for the queries in blocks 1110 and 1210 can be
obtained from user subscription table 940. In one implemen-
tation, there is a maximum number of objects that can be
followed.

E. Partial Pre-Computing of Items for a Feed

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations. In various implementations, method 1300
can be performed each time an event is written to the event
history table, or periodically based on some other criteria
(e.g., every minute, after five updates have been made, etc.).

In block 1310, data indicative of an event is received. The
data may be the same and identified in the same way as
described for block 1010. The event may be written to an
event history table (e.g., table 910).

In block 1320, the object(s) associated with the event are
identified. In various implementations, the object may be
identified by according to various criteria, such as the record
being changed, the user changing the record, a user posting a
message, and a user whose profile the message is being posted
to.

In block 1330, the users following the event are deter-
mined. In one implementation, one or more objects that are
associated with the event are used to determine the users
following the event. In one implementation, a subscription
table (e.g., table 940) can be used to find the identified objects.
The entries of the identified objects can contain an identifier
(e.g., user ID 941) of each the users following the object

In block 1340, the event and the source of the event, e.g., a
record (for a record update) or a posting user (for a user-
generated post) are written to a news feed table along with an
event identifier. In one implementation, such information is
added as a separate entry into the news feed table along with
the event ID. In another implementation, each of the events
for a user is added as a new column for the row of the user. In
yet another implementation, more columns (e.g., columns
from the other tables) can be added.

News feed table 960 shows an example of such a table with
user ID 961 and event ID or pointer 962. The table can be
organized in any manner. One difference from event history
table 910 is that one event can have multiple entries (one for
each subscriber) in the news feed table 960. In one implemen-
tation, all of the entries for a same user are grouped together,
e.g., as shown. The user U819 is shown as following events
E37 and E90, and thus any of the individual feed items result-
ing from those events. In another implementation, any new

10

15

20

25

30

35

40

45

50

55

60

65

38
entries are added at the end of the table. Thus, all of the
followers for a new event can be added as a group. In such an
implementation, the event IDs would generally be grouped
together in the table. Of course, the table can be sorted in any
suitable manner.

In an implementation, if the number of users is small, then
the feed items in one or more of the tables may be written as
part of the same write transaction. In one implementation, the
determination of small depends on the number of updates
performed for the event (e.g., a maximum number of update
operations may be allowed), and if more operations are per-
formed, then the addition of the feed items is performed. In
one aspect, the number of operations can be counted by the
number of rows to be updated, including the rows of the
record (which depends on the update event), and the rows of
the feed tracked update tables, which can depend on the
number of followers. In another implementation, if the num-
ber of users is large, the rest of the feed items can be created
by batch. In one implementation, the feed items are written as
part of a different transaction, i.e., by batch job.

In one implementation, security checks can be performed
before an entry is added to the news feed table 960. In this
manner, security checks can be performed during batch jobs
and may not have to be performed at the time of requesting a
news feed. In one implementation, the event can be analyzed
and if access is not allowed to a feed item of the event, then an
entry is not added. In one aspect, multiple feed items for a
same user may not result from a same event (e.g., by how an
event is defined in table 910), and thus there is no concern
about a user missing a feed item that he/she should be able to
view.

In block 1350, a request for a news feed is received from a
user. In one implementation, the request is obtained when a
user navigates to the user’s home page. In another implemen-
tation, the user selects a table, link, or other page item that
causes the request to be sent.

In block 1360, the news feed table and other tables are
accessed to provide displayable feed items of the news feed.
The news feed can then be displayed. In one implementation,
the news feed table can then be joined with the event history
table to determine the feed items. For example, the news feed
table 960 can be searched for entries with a particular user ID.
These entries can be used to identify event entries in event
history table 910, and the proper information from any child
tables can be retrieved. The feed items (e.g., feed tracked
updates and messages) can then be generated for display.

In one implementation, the most recent feed items (e.g.,
100 most recent) are determined first. The other feed items
may then be determined in a batch process. Thus, the feed
item that a user is most likely to view can come up first, and
the user may not recognize that the other feed items are being
done in batch. In one implementation, the most recent feed
items can be gauged by the event identifiers. In another imple-
mentation, the feed items with a highest importance level can
be displayed first. The highest importance being determined
by one or more criteria, such as, who posted the feed item,
how recently, how related to other feed items, etc.

In one implementation where the user subscription table
940 is used to dynamically create a news feed, the query
would search the subscription table, and then use the object
IDs to search the event history table (one search for each
object the user is following). Thus, the query for the news feed
can be proportional to the number of objects that one was
subscribing to. The news feed table allows the intermediate
block of determining the object IDs to be done at an earlier
stage so that the relevant events are already known. Thus, the

US 9,253,283 B2

39

determination of the feed is no longer proportional to the
number of object being followed.

In some implementations, a news feed table can include a
pointer (as opposed to an event identifier) to the event history
table for each event that is being followed by the user. In this
manner, the event entries can immediately be retrieved with-
out having to perform a search on the event history table.
Security checks can be made at this time, and the text for the
feed tracked updates can be generated.

X. Display of a Feed

Feeds include messages and feed tracked updates and can
show up in many places in an application interface with the
database system. In one implementation, feeds can be scoped
to the context of the page on which they are being displayed.
For example, how a feed tracked update is presented can vary
depending on which page it is being displayed (e.g., in news
feeds, on a detail page of a record, and even based on how the
user ended up at a particular page). In another implementa-
tion, only a finite number of feed items are displayed (e.g.,
50). In one implementation, there can be a limit specifically
on the number of feed tracked updates or messages displayed.
Alternatively, the limit can be applied to particular types of
feed tracked updates or messages. For example, only the most
recent changes (e.g., 5 most recent) for a field may be dis-
played. Also, the number of fields for which changes are
displayed can also be limited. Such limits can also be placed
on profile feeds and news feeds. In one implementation, feed
items may also be subject to certain filtering criteria before
being displayed, e.g., as described below.

XI. Filtering and Searching Feeds

It can be possible that a user subscribes to many users and
records, which can cause a user’s news feed to be very long
and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some
important or interesting feed items may not be read. In some
implementations, filters may be used to determine which feed
items are added to a feed or displayed in the feed.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of'a database system using
filtering criteria, performed in accordance with some imple-
mentations. Any of the following blocks can be performed
wholly or partially with the database system, and in particular
by one or more processor of the database system.

In block 1410, one or more criteria specitying which feed
items are to be displayed to a first user are received from a
tenant. In one implementation, the criteria specify which
items to add to the custom feed. For example, the criteria
could specify to only include feed items for certain fields of a
record, messages including certain keywords, and other cri-
teria mentioned herein. In another implementation, the crite-
ria specify which items to remove from the custom feed. For
example, the criteria could specify not to include feed items
about certain fields or including certain keywords.

In block 1420, the database system identifies feed items of
one or more selected objects that match the criteria. The feed
items can be stored in the database, e.g., in one or more of the
tables of FIG. 9A. In one implementation, the one or more
selected objects are the objects that the first user is following.
Inanother implementation, the one or more selected objects is
a single record whose record feed the first user is requesting.

In block 1430, the feed items that match the criteria are
displayed to the first user in the custom feed. The generation
of text for a feed tracked update can occur after the identifi-
cation of the feed items (e.g., data for a field change) and
before the display of the final version of the feed item.

In one implementation, the criteria are received before a
feed item is created. In another implementation, the criteria

10

25

30

40

45

55

40

are received from the first user. In one aspect, the criteria may
only be used for determining feeds to display to the first user.
In yet another implementation, the criteria are received from
a first tenant and apply to all of the users of the first tenant.
Also, in an implementation where a plurality of criteria are
specified, the criteria may be satisfied for a feed item if one
criterion is satisfied.

Some implementations can provide mechanisms to search
for feed items of interest. For example, the feed items can be
searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed items
about or from a particular user. In one implementation, only
messages (or even just comments) from a particular user can
be selected. Besides searching for feed items that match cri-
teria, one also could search for a particular feed item.

XII. Ghosting and Proxies

FIG. 15 shows a flowchart of an example of a computer
implemented method 1500 for maintaining anonymity in an
online social network, performed in accordance with some
implementations. At block 1504, a first user is designated as
a ghost user with respect to an entity in the online social
network at a computing device or any number of computing
devices cooperating to perform method 1500. As described in
the examples below, a ghost user can follow a user, group, or
other entity while being invisible at various levels in the social
networking environment. For instance, a human resources
manager may want to monitor an employee’s activity on a
group feed without showing up as a follower of the feed. In
another instance, in the context of Facebook®, a parent may
want to follow his teenager without embarrassing the teen-
ager by showing up as a follower on her profile.

In the context of FIG. 15, an entity can refer to any con-
struct in the online social network that can be followed. In
addition to users and groups of users, examples of entities
with respect to which the first user can be a designated a ghost
user can include records, posts, conversations, and docu-
ments. In some implementations, the entity can be a CRM
entity such as a case, account, contact, lead, or opportunity.
For example, a high-level executive may want to follow an
opportunity feed without showing up as a follower of the feed
in user systems of lower level employees to avoid unnerving
these employees.

In various implementations, a user may request to follow a
user, group, record, or other entity as a ghost user, or a user
may be automatically added as follower of the entity as a
ghostuser. In some instances, for example, a GUI provided on
a display of user system such as user system 12 in FIG. 1A
may include a button marked “follow as ghost”. In some
implementations, a group of users may be designated as a
ghost group or ghost sub-group. For example, a member of an
Executive Management committee may have the ability to
designate all other members of the committee as ghost users
following a particular group, thereby creating a ghost sub-
group following the group.

In some instances, a user may be automatically subscribed
to one or more entities based on attributes identified in: the
user’s profile, entities (e.g., records, organizations, other
groups, other users) being followed by the user, records (e.g.,
cases, accounts, clients) with which a user is associated, the
user’s title (such as vice-president, team leader, account
executive, sales representative, etc.), the user’s team, depart-
ment, role, senior or junior relative status in the organization,
social networking status, relationships with other users in
terms of chain of command (e.g., the user’s direct reports,
etc.), and other data indicating relationships with various
entities. For example, a manager may be automatically sub-
scribed as a ghost user to all groups or records created by her

US 9,253,283 B2

41

direct reports. Examples of methods for designating a user as
a ghost user with respect to an entity in the online social
network are described below with respect to FIG. 16.

In some instances, a suitable storage medium stores data
designating the first user as a ghost user as indicated at block
1504. By way of example, at block 1504, a designation of the
first user as a ghost user can be stored on a suitable storage
medium such as tenant data storage 22 and/or system data
storage 24 of FIGS. 1A and 1B. In other examples, any of the
various databases and/or memory devices disclosed herein
can serve as storage media to store and maintain ghost user
information in block 1504. In some implementations, ghost
user designations can be stored in one or more database tables
that can be accessed to retrieve relevant information as part of
a display. For example, a database table stored on a suitable
storage medium (such as user subscription table 940 in FIG.
9A) can store followers of a group, record, or other entity in
rows, with one more columns identifying certain followers as
ghost users.

In FIG. 1508, the ghost user is provided access to a social
network feed associated with the entity. According to various
implementations, the ghost user can have complete or limited
access to the feed. For instance, a ghost user may be fully
operational in the feed, with the ability to read, update, post
to, and delete feed content just as she would if she were a
non-ghost user subscribed to the feed. In some other
instances, a ghost user may have the ability to only read the
feed content. The level of access provided at block 1508 can
be determined, for example, by the creator of the group or
other entity, or by the system. In some implementations, the
level of access provided to a ghost user can depend on the
seniority level of the ghost user. For example, a middle man-
ager may be allowed to read information updates in a feed as
a ghost user, but not post to the feed, while a high-level
executive may be allowed to post to the feed as a ghost user.

Access information stored on a suitable storage medium
such as tenant data storage 22 and/or system data storage 24
of FIGS. 1A and 1B or in any of the various databases and/or
memory devices disclosed herein can be retrieved in block
1504. For example, permission levels indicating access may
be stored in a database table that stores followers of an entity
and ghost user designations, or in a cross-referenced database
table.

In FIG. 15, at block 1512, the one or more computing
device performing method 1500 is configured to determine
one or more invisibility levels for the ghost user. The extent of
the ghost user’s invisibility can be determined by an invis-
ibility level. An invisibility level can determine to whom the
ghost user is invisible and/or what is concealed. In some
instances, a ghost user may be invisible to all users. For
example, a ghost user following a group may be invisible to
all other followers of the group. In some instances, a ghost
user may be visible only to subset of the other users, e.g., to a
group creator, or to other members of the ghost user’s orga-
nization. In various implementations, the users to whom the
ghostuser is invisible may be determined by user input and/or
automatically by the system. For example, a ghost user may
type or make a selection in a settings page of a user interface
indicating the users to which he wishes to be invisible. In
some instances, a ghost user may identify users who can see
a post or other update at the time of posting. In another
example, a group leader may determine one or more invis-
ibility levels available for ghost users or certain classes of
ghost users in setting up a group.

In some instances, the system may automatically deter-
mine the users to which the ghost user is invisible based on a
default setting or based one or more attributes such as the

10

15

20

25

30

35

40

45

50

55

60

65

42

ghostuser’s title (such as vice-president, team leader, account
executive, sales representative, etc.), team, department, role,
senior or junior relative status in the organization, social
networking status, relationships with other users in terms of
chain of command (e.g., the user’s direct reports, etc.), and
other data indicating relationships with other users.

One or more of ghost user identity, feed content, and other
user activity can be concealed from the other users. For
example, when a group page is rendered, the identity of the
ghost user will be concealed on the group page such that the
ghost user will not appear under a “Members” region of the
group page, at least when presented on a user interface of a
user to whom the ghost user is invisible. Typically, there will
be no indication that there is a ghost user following the group.
However, in some implementations, a page may indicate that
there are one or more ghost users following the group while
concealing the identities of the ghost users. For example, a
ghost user may be represented by a ghost icon. Feed content
such as updates to the ghost user’s status, posts, comments,
indications of preference such as “likes” and “dislikes”,
uploaded files, and hyperlinks to social network data or other
network data such as various documents and/or web pages on
the Internet can be concealed according to a determined invis-
ibility level.

In some instances, data indicating the one or more invis-
ibility levels determined at block 1512 can be stored on a
suitable storage medium such as tenant data storage 22 and/or
system data storage 24 of FIGS. 1A and 1B or any of the
various databases and/or memory devices disclosed herein.
The determined invisibility levels and metadata indicating the
respective users to which they apply can also be stored in one
or more database tables that can be accessed to retrieve rel-
evant information as part of a display. For example, a database
table stored on a suitable storage medium can store subscrib-
ers in rows, with one more columns identifying ghost users
and associated invisibility levels. A cross-referenced table
can store invisibility levels in rows with one or more columns
identifying the users to which the invisibility levels apply. In
some implementations, an additional one or more columns
may identify content to be concealed. Examples of database
tables for tracking ghost users and invisibility levels are
described below with reference to FIG. 19.

In FIG. 15, at block 1516, the one or more computing
devices performing method 1500 are configured to generate
data indicating content to be displayed in accordance with
one or more invisibility levels of the ghost user and at, block
1520, the one or more computing devices are configured to
display a presentation of the social network feed in a user
interface associated with a second user, with the presentation
concealing one or more of the identity of the ghost user and
feed content associated with the ghost user according to a
determined invisibility level.

In FIG. 15, at block 1520, in some examples, the display
device can be a display of a user system 12 as described above
with reference to FIGS. 1A and 1B. Such a user system 12 can
be operated by another subscriber of the social network feed.
The display device of block 1520 can be configured to con-
currently display other components in a suitable user inter-
face, lists of users, and relevant data regarding a group, a
user’s profile, a record, or other construct in the online social
network.

In FIG. 15, in one example, an app server 288 in the
on-demand service environment 200 of FIGS. 2A and 2B
includes one or more processors configured to perform part or
all of blocks 1504-1520. In other instances, one or more other
computing devices such as user systems 12 and/or other serv-
ers retrieve, process, and exchange data to cooperate with app

US 9,253,283 B2

43

server 288 to perform the blocks. When user input data, for
example, provides the invisibility level of block 1512, such
data can be received by a server over a data network from a
user operating a user system 12 as shown in FIGS. 1A and 1B.
In other instances, such data is received from a proxy server
on behalf of a user or other data source. Various implemen-
tations of method 1500 are possible, such that any of the
servers described above with reference to FIG. 2B or other
computing devices disclosed herein can be configured to
receive and process parameters and information updates in
accordance with method 1500.

Returning to block 1520, in one example, the data provided
to the display device is transmitted from a server such as app
server 288 over network 14 to a user system 12 of FIGS. 1A
and 1B. In this example, the display device is one component
of'the user system 12, which includes a processor configured
to execute a web browser program stored on user system 12 to
output a graphical presentation of the feed on the display
device, for instance, in a GUIL In other examples, the data
provided to the display device at block 1520 is generated
locally at user system 12. By the same token, one or more of
the blocks 1504-1520 as described above can also be per-
formed at a user system 12 as an alternative to being per-
formed at one or more servers in an online social network.
The same is true for the other examples of methods described
below.

FIG. 16 shows a flowchart of an example of a computer
implemented method 1600 for maintaining anonymity in an
online social network, performed in accordance with some
implementations. FIG. 16 is described with reference to
FIGS. 17-20B. At block 1604, a request to follow an entity in
the online social network as a ghost user is received at a
computing device or computing devices configured to per-
form method 1600. The request can be submitted by the
potential ghost user, for example, in various manners. For
instance, to join a public group as a ghost user, the user may
click a button “Join as Ghost” on a group detail page or in a
groups list with reference to the group. In another instance, a
user may respond to an invitation to join as a ghost.

FIG. 17 shows an example of a network communication for
inviting a user to join a group as a ghost user, where the
network communication is in the form of an email displayed
in a GUI on a recipient user’s display device, according to
some implementations. In FIG. 17, an invitation to join the
XYZ Competitive Group has been sent as an email 1704 to
Mary Thomas. A graphical representation of the email is
shown, as presented in a user interface of a computing device
operated by Mary using an appropriate email application or
service. In this example, the email 1704 is sent from the one
or more computing devices to Mary in response to the cre-
ation of the group by one of her direct reports, John Smith.
The email 1704 includes a “Join as Ghost” button 1716 as one
of'a number of options for responding to the invitation. “Join
as Ghost” button 1716 is a graphical representation of a link,
the selection of which sends an email or other network com-
munication to instruct one or more servers in the online social
network to designate Mary as a ghost member of the XYZ
Competitive Group. The “Join as Ghost” button 1716 in email
1704 of FIG. 17 represents one of many examples of manners
in which a user can request to follow an entity as a ghost user.

Returning to FIG. 16, at block 1608, one or more invisibil-
ity levels with respect to one or more followers of the entity
are determined. FIG. 18 shows an example of a ghost user
invisibility levels set-up window 1800 as displayed in a GUI
on a display device, where a user or administrator can define
invisibility levels, according to some implementations. In
FIG. 18, the ghost user invisibility levels set-up window 1800

10

15

20

25

30

35

40

45

50

55

60

65

44

includes a number of selections and data entry fields operable
in a user interface. Window 1800 can be generated, for
example, in response to pressing a button such as “Join as
Ghost” button 1716 in FIG. 17, or other similar action. Win-
dow 1800 can be displayed on a display device as an overlay
of a feed or profile page of a user interface or as a separate
window, depending on the desired implementation.

The ghost user invisibility levels set-up window 1800 in
FIG. 18 has a “visible” list 1801, with selections of users to
whom the ghost user will be visible and an “invisible” list
1803, with selections of users to whom the ghost user will be
invisible. In the example of FIG. 18, the ghost user is notified
that her membership (at 1805) and posts (at 1807) will be
visible to the selected users. In some other implementations,
the invisibility levels may be further defined by what is visible
or invisible to selected users. For example, in some imple-
mentations, a ghost user may define a first set of users to
whom her membership in the group will be visible and further
define a subset of the first set of users to whom her posts will
be visible.

In the visible list 1801, the ghost user has defined the users
to whom she will be visible with the selections of Group
Leader (John Smith) 1813, Committees (Executive Manage-
ment) 1817, and People (Joe Jackson and John Keynes) 1818.
In other examples, numerous other users could also or alter-
natively be selected, such as no members 1812, all members
in the ghost user’s department 1814, all members in the ghost
user’s organization 1815, and members of other departments
1816. Various selections can have accompanying data entry
fields 1835-1838 for the ghost user to enter data defining the
invisibility levels. In various implementations, the ghost user
may enter the data using a keyboard and/or select one or more
entries from a drop-down list. In addition to or instead of
defining invisibility levels using visible list 1801, the ghost
user may define the users to who she will be invisible using
the invisible list 1803.

In some implementations, part or all of the determinations
can be performed automatically by one or more computing
devices. For instance, when a user submits a request to follow
a record feed as a ghost user, data can automatically be
retrieved from that user’s profile as stored in a database and
screened to define one or more invisibility levels. In some
implementations, when the user’s profile identifies the user as
having a particular seniority level, the one or more computing
devices can be configured to automatically apply default
invisibility levels such that the user is invisible to all users
with a lower seniority level and visible to all users with the
same or higher seniority level as the ghost user. In some other
implementations, combinations of user-defined invisibility
levels and system-defined invisibility levels can be deter-
mined. For example, a ghost user may always be visible to a
group leader, such that the ghost user cannot opt to conceal
her identity or posts from the group leader.

Returning to FIG. 16, at block 1612, the one or more
computing devices performing method 1600 are configured
to generate data indicating the one or more invisibility levels
of'the ghost user with respect to one or more followers of the
entity and at block 1616, the one or more computing devices
are configured to update a database maintaining the identifi-
cations of users following the entity and corresponding invis-
ibility levels. Examples of database tables including users and
corresponding invisibility levels are discussed below with
respect to FIG. 19.

FIG. 19 shows an example of an entity subscription table
1910 that may be used to track users following a particular
entity, in accordance with some implementations. While the
entity subscription table 1910 in FIG. 19 tracks users for a

US 9,253,283 B2

45

particular entity (e.g., a group, arecord, etc.), the subscription
information may be stored in a table tracking user subscrip-
tions to multiple entities, such as user subscription table 940
in FIG. 9A. In various implementations, entity subscription
table 1910 can have columns of user ID 1901, access rights
1903, and invisibility level 1905. In some implementations,
entity subscription table 1910 may include an additional col-
umn designating certain users as ghost users. In the example
in FIG. 1910, ghost users may be designated as by any invis-
ibility level other than “0”, with invisibility level “0” indicat-
ing a user who is completely visible. Access rights 1903 may
be determined as discussed above with respect to block 1508
of FIG. 15. In this example, users U812 and U819 may have
full access to page and/or social network feed associated with
the entity including the ability to R (read), W (write), U
(update), and D (delete), while users U911, U310, and U312
have more limited access.

As noted above, in this example, an invisibility level of “0”
can indicate a fully visible (non-ghost) user, while invisibility
levels 1-3 each represent a different extent of invisibility for
ghost users U819, U911, U110, and U312. For example,
ghost user U819, having an invisibility level of “1” may be
invisible only to other subscribers outside his organization;
ghost user U911, having an invisibility level of “2” may be
invisible only to other subscribers outside the Legal depart-
ment; ghost users U110 and U312, having an invisibility level
of “3” may be invisible to all other subscribers except the
group leader.

Entity subscription table 1910 can refer to an invisibility
level table 1920 that can be used to store invisibility levels and
metadata indicating the users to which the invisibility levels
apply. Invisibility level table 1920 includes columns of invis-
ibility level 1911 and user IDs 1913. In this example, invis-
ibility level “1” is associated with a list of users U812, U323,
U098, U212, U312, etc., to whom ghost users having an
invisibility level of “1” will be invisible. In some implemen-
tations, an invisibility level may be defined by one or more
departments, organizations, etc., and can have a pointer to one
or more tables including a list of those users. Also, in some
implementations, data indicating one or more additional rules
for a particular invisibility level may be stored in invisibility
level table 1920. For example, a ghost user having an invis-
ibility level of “4” may be presented with a list of other
followers of the entity to select from on a post-by-post basis.

A feed table 1930 may also include invisibility level infor-
mation that can be used to generate a feed according to an
invisibility level. In the example of FIG. 19, the feed table can
be a group feed table, an account feed table, a case feed table,
anews feed table, etc. as described above. The feed table 1930
in FIG. 19 can include entity column 1921, event ID or pointer
column 1923, and invisibility level column 1925. When gen-
erating a feed as described in FIG. 11, whether the event is
invisible to the user to which the feed is to be displayed can be
checked. Tables 1910, 1920, and 1930 can be stored in any
suitable storage medium accessible by one or more comput-
ing devices performing the methods described herein, such as
system data storage 24 or tenant data storage 22 of FIG. 1B.

Returning to FIG. 16, at block 1620, a selection for the
ghost user to publish content to a social network feed associ-
ated with the entity is provided. Such a selection can be
provided, for example, in any manner described above
including using a “Share” button on the profile page associ-
ated with the entity. The content can then be stored as
described above in FIG. 10, for example, in a feed tracking
table at block 1624. In some implementations, the content
with invisibility level information can be stored in a table such
as feed table 1930 in FIG. 19.

10

15

20

25

30

35

40

45

50

55

60

65

46

At block 1628, the one or more computing devices per-
forming method 1600 are configured to generate data indi-
cating feed items to be displayed according to one or more
invisibility levels and at block 1632, the one or more comput-
ing devices are configured to display a first presentation of the
social network feed in a user interface a second user. The first
presentation conceals one or more of the identity of the ghost
user and feed content associated with the ghost user accord-
ing to a stored invisibility level.

In some implementations, a second presentation of the
social network feed associated with the entity is displayed in
a user interface associated with a third user, the presentation
including the one or more of the identity of the ghost user and
feed content associated with the ghost user concealed in the
first presentation. By way of example, FIG. 20A shows an
example of a page in which a ghost user is visible and FIG.
20B showing an example of the page shown in FIG. 20A with
the identity the ghost user and associated feed content con-
cealed.

FIG. 20A shows an example of a group page 2000 for a
private group “Deal Room: green solar & 123 Computers” set
up to facilitate negotiations between Green Solar and its
customer, 123 Computers. The group page 2000 includes an
option 2003 to create a ghost sub-group, a member region
2007, and a group feed 2004. In this example, the group page
is rendered on a user device of user Bill Bauer, an employee
of Green Solar. A contract negotiation team may want an
executive to oversee negotiations, but to avoid undermining
the authority of the contract negotiator or unnerving the
employees of the customer, the executive may choose to join
the group as a ghost user. In this example, an executive James
Saxon is a ghost user, visible only to members who are Green
Solar employees. Because ghost user James Saxon is visible
to Bill Bauer, a Green Solar employee, a thumbnail image
2001 is included in member region 2007 on the display pro-
vided on Bill Bauer’s user device. According to various
implementations, member region 2007 may or may not
include an indication that ghost user James Saxon is a ghost
user. For example, ghost users may listed in a separate sub-
region of the members region or be identified by an icon in
addition to or instead of their images. In the same or alterna-
tive implementations, an indication of a member as a ghost
user may be provided in a hover box, for example. Such an
indication may or may not further include information about
one or more invisibility levels of the ghost user. In some
alternate implementations, a ghost user may show up in a
member region 2007 without any indication that she is a ghost
user. In the example of FIG. 20A, member region 2007 indi-
cates that there are 30 total members in the group, including
3 ghost users. The user Bill Bauer is also presented with an
option 2005 to “Hide Ghosts [3]”.

The group feed 2004 as presented on the user device of Bill
Bauer includes two feed items authored by ghost user James
Saxon: a post 2008 stating that “It’s important that we close
by Friday before our investor meeting” and a comment 2009
in a thread 2010 advising Bill Bauer to push back on a coun-
teroffer presented by customer Ella Johnson. The post 2008 is
an example of a post that ghost user James Saxon may not
want to be seen by the customer, as it could provide the
customer with additional leverage in the negotiation. The
comment 2009 is an example of a comment that ghost user
James Saxon may not want to be seen by the customer, as it
could undermine Bill Bauer. According to various implemen-
tations, feed items authored by a ghost user may or may not
include an indication that ghost user James Saxon is a ghost
user. In the example of FIG. 20A, each item authored by ghost
user James Saxon is labeled at 2011 with “(Ghost)”. This can

US 9,253,283 B2

47

let Bill Bauer and the other Green Solar employees know that
the content published by James Saxon and other ghost users is
not visible to the customer. In some implementations, a list of
members to whom a ghost user or a particular post or other
feed content is invisible may be provided, for example, in a
hover box.

FIG. 20B shows an example of the group page 2000 for the
private group “Deal Room: green solar & 123 Computers™ as
presented on a user device of user Ella Johnson, an employee
of 123 Computers. In the presentation shown in FIG. 20B,
James Saxon does not appear in member region 2007, with
only 27 members listed rather than the 30 listed in FIG. 20A.
Further, group feed 2004 does not include any content
authored by ghost user James Saxon. Specifically, thread
2010 does not include comment 2009 and post 2008 is also
concealed from user Ella Johnson.

Some implementations of the disclosed systems, appara-
tus, methods, and computer readable storage media are con-
figured to designate a proxy in an online social network. FIG.
21 shows an example of a flowchart of a computer imple-
mented method 2100 for providing a proxy in an online social
network, performed in accordance with some implementa-
tions. At block 2104, a first user is designated as a proxy user
of a second user with respect to one or more entities in the
online social network. As described in the examples below, a
first user can be designated as a proxy with respect to a
particular user, group of users, records, or other entities
within the online social network. For example, an organiza-
tion may want its helpdesk employees to use their real names
in a social network feed (rather than a generic handle like
“helpdesk™) to provide a personal touch. When a helpdesk
employee takes vacation time, he may designate a proxy to
handle his cases. In another example, it may be an employee’s
responsibility to post frequently in one or more group feeds in
the online social network. When that employee takes vaca-
tion, she may want to designate a coworker as a proxy to post
in some of the less important group feeds.

In various implementations, a user may designate another
user as a proxy. In some instances, for example, a GUI pro-
vided on a display of user system such as user system 12 in
FIG. 1A may include an option to designate proxy. An
example of a proxy set-up page is described below with
reference to FIG. 22. In some instances, a user may be auto-
matically subscribed to one or more entities based on
attributes identified in: users’ profiles, entities (e.g., records,
organizations, other groups, other users) being followed by
users, records (e.g., cases, accounts, clients) with which a
user is associated, titles (such as vice-president, team leader,
account executive, sales representative, etc.), team, depart-
ment, role, senior or junior relative status in the organization,
social networking status, relationships with other users in
terms of chain of command (e.g., the user’s direct reports,
etc.), and other data indicating relationships with various
entities. For example, an employee may be automatically
designated as a proxy user for a co-worker having the same
job title when that co-worker requests vacation time.

FIG. 22 shows an example of a proxy set-up page 2200 for
user Joe Olsen in the form of a GUI, as displayed on a display
device according to some implementations. Proxy set-up
page 2200 includes an entity region 2205 in which a user can
specify various entities for which to designate a proxy. The
entity region 2205 also includes an option 2211 to designate
aproxy for all purposes, including for all groups, records, and
other entities that the user follows. In this example, entity
region 2205 includes selections for inclusion for proxy des-
ignation of groups 2212, accounts 2213, and other entities
2214.

40

45

50

48

These various selections can have accompanying data
entry fields 2232-2234 for the user to enter data referencing
the respective entities. In various implementations, Joe may
enter the data using a keyboard and/or select one or more
entries from a drop-down list. In entity region 2205, the
entities groups 2212 and accounts 2213 have been selected,
with the user entering the “Computing” group and “XYZ”
and “ABC” accounts. By selecting the Computing group and
the XYZ and ABC accounts, Joe can designate a proxy to act
on his behalf with reference to those entities. In other
examples, numerous entities could also or alternatively be
selected, such as one or more groups, cases, clients, etc. In
some implementations, a user may identify one or more feeds
for which to designate a proxy.

A proxy duration region 2210 includes data entry fields
identifying a time and date after which the proxy can be
active. A stop time can be similarly selected, after which time
the proxy will no longer be active. A proxy identification
selection 2221 includes a data field 2222 at which the user
who will act as a proxy can be identified. In various imple-
mentations, Joe may enter the name using a keyboard and/or
select one or more entries from a drop-down list. For example,
the drop-down list may include other people in the Joe’s
department or with Joe’s job title, etc. In this example, Joe has
selected Zach Dunn to act as his proxy with respect to the
group and accounts identified in entity region 2205 for the
duration specified in proxy duration region 2210. A proxy
rights region 2220 includes selections of actions that the
proxy is authorized to take on the user’s behalf. In the
example of FIG. 22, the proxy is authorized to read (2224),
write to (2225), and update (2227) but not delete (2226)
profiles and/or feeds associated with the selected entities. In
other examples, numerous permissions could also or alterna-
tively be selected, including permission to post updates but
not to comment, etc.

All posts made by Zach as proxy for Joe will have Joe’s
name associated with them, however, the user may be able to
select whether the proxy’s name will also be associated with
them. In this example, in region 2223, Joe is presented with
selections of “Joe Olsen” at 2242 or “Zach Dunn, proxy for
Joe Olsen” at 2244. Once the proxy set-up is completed, it can
be submitted using a “submit” button 2260. In various imple-
mentations, the proxy may be implemented once submitted or
sent to the proxy for approval. The user can then add another
proxy (e.g., for a different entity, a different duration, etc.) via
button 2270.

In some implementations, one or more invisibility levels
may be determined for the proxy user in a similar fashion to
determining an invisibility level for a ghost user as described
above. For example, in some implementations, the identity of
the proxy user may be visible to all users within the second
user’s organization, but concealed from users outside the
organization.

Returning to FIG. 21, in some instances, data identifying
proxies designated in block 2104 can be stored on a suitable
storage medium such as tenant data storage 22 and/or system
data storage 24 of FIGS. 1A and 1B or any of the various
databases and/or memory devices disclosed herein. Proxy
information can also be stored in one or more database tables
that can retrieve relevant information to allow access to a
page, update an event history table, display a feed, etc. FIG.
23 shows an example of a proxy table 2300 that may be used
in tracking proxies. In various implementations, proxy table
2300 can have columns of entity ID 2301, user ID 2303, proxy
user 1D 2305, start date/time 2307, stop date/time 2309, and

US 9,253,283 B2

49

access rights 2311. Additional columns may include data
indicating how proxy-submitted posts and other messages be
labeled.

In FIG. 21, at block 2108, the one or more computing
device performing method 2100 is configured to receive feed
content from the proxy user to be published in one or more
social network feeds associated with the one or more entities
in the online social network. For example, a user designated
as proxy for a group can access the group page and submit a
post as though he were a member of the group. In some
implementations, the second user may be given an opportu-
nity to approve the feed content received in block 2108 prior
to block 2112.

In FIG. 21, at block 2112, the feed content is associated
with the second user. In some implementations, one or more
database tables may be updated to keep track of the proxy user
making the post, the content of the post and the user for whom
the proxy is posting. FIG. 24 shows an example of an event
history table 2410 that may be used in tracking proxy activity.
Event history table 2410 can have columns of event ID 2411,
entity ID 2412, created by 1D 2413 (indicating the original
user), and proxy ID 2415. The event history table 2410 can be
an example of an event history table in FIG. 9A, with an
additional column for storing proxy information. The event
history table 2410 can be cross-referenced with a comment
table, post table, field changed table, etc. as described with
reference to FIG. 9A, to track proxy activity.

In FIG. 21, at block 2116, the one or more computing
devices performing method 2100 are configured to generate
data indicating the association of the feed content with the
second user and at block 2120, the one or more computing
devices are configured to display a presentation of the one or
more social network feeds in a user interface. The presenta-
tion includes the feed content and an indication of the asso-
ciation.

In various implementations, such a presentation may or
may not include an indication of the proxy user. As noted
above, in some implementations, a post or other feed content
may be labeled as if the second user had submitted it with no
indication that it was submitted by a proxy (e.g., “Joe Olsen”)
or with an indication that it was submitted by a proxy (e.g.,
“Zach Dunn, proxy for Joe Olsen”).

The specific details of the specific aspects of implementa-
tions disclosed herein may be combined in any suitable man-
ner without departing from the spirit and scope of the dis-
closed implementations. However, other implementations
may be directed to specific implementations relating to each
individual aspect, or specific combinations of these indi-
vidual aspects.

While the disclosed examples are often described herein
with reference to an implementation in which an on-demand
database service environment is implemented in a system
having an application server providing a front end for an
on-demand database service capable of supporting multiple
tenants, the present implementations are not limited to multi-
tenant databases nor deployment on application servers.
Implementations may be practiced using other database
architectures, i.e., ORACLE®, DB2® by IBM and the like
without departing from the scope of the implementations
claimed.

It should be understood that some of the disclosed imple-
mentations can be embodied in the form of control logic using
hardware and/or using computer software in a modular or
integrated manner. Other ways and/or methods are possible
using hardware and a combination of hardware and software.

Any of'the software components or functions described in
this application may be implemented as software code to be

5

10

15

20

25

30

35

40

45

55

60

65

50

executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
software code may be stored as a series of instructions or
commands on a computer-readable medium for storage and/
or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital versa-
tile disk), flash memory, and the like. The computer-readable
medium may be any combination of such storage or trans-
mission devices. Computer-readable media encoded with the
software/program code may be packaged with a compatible
device or provided separately from other devices (e.g., via
Internet download). Any such computer-readable medium
may reside on or within a single computing device or an entire
computer system, and may be among other computer-read-
able media within a system or network. A computer system,
or other computing device, may include a monitor, printer, or
other suitable display for providing any of the results men-
tioned herein to a user.

While various implementations have been described
herein, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the implementations described herein, but should be
defined only in accordance with the following and later-sub-
mitted claims and their equivalents.

What is claimed is:

1. A method for maintaining anonymity in a social net-
working system implemented using a database system, the
method comprising:

designating, using a server of the database system, a first

user of the social networking system as a ghost user with
respect to an entity in the social networking system, the
ghost user having access to feeds associated with the
entity and the ghost user having an invisibility to other
users of the social networking system;

determining, based on a seniority level of the ghost user in

an organizational hierarchy of people of an organization,
one or more invisibility levels defining the invisibility of
the ghost user to the other users:

generating data indicating content to be displayed in accor-

dance with the one or more invisibility levels of the ghost
user; and

providing the generated data to a display device to display

a first presentation of a feed of the feeds associated with
the entity in a user interface associated with a second
user, the first presentation concealing one or more of the
identity of the ghost user or feed content associated with
the ghost user according to the determined one or more
invisibility levels.

2. The method of claim 1, wherein the entity is a user, a
group of users, or a record.

3. The method of claim 1, wherein the entity is an account,
an opportunity, a case, a lead, or a contact.

4. The method of claim 1, further comprising:

updating a database maintaining identifications of users

and corresponding invisibility levels to store the deter-
mined invisibility levels.

5. The method of claim 1, wherein providing the ghost user
access to the feed includes:

providing an opportunity for the ghost user to publish feed

content to the feed.

6. The method of claim 1, further comprising:

receiving a request from the first user to be designated a

ghost user with respect to the entity.

7.

US 9,253,283 B2

51

The method of claim 1, further comprising:

providing the generated data to a display device configured

8

to display a second presentation of the feed associated
with the entity in a user interface associated with a third
user, the presentation including the one or more of the
identity of the ghost user and feed content associated
with the ghost user concealed in the first presentation.

. The method of claim 1, further comprising:

designating a plurality of users as a group of ghost users

9.
ibility levels are determined at least in part based on one or
more of: the ghost user’s title, the ghost user’s team, the ghost
user’s department, the ghost user’s role, the ghost user’s

with respect to the entity.
The method of claim 1, wherein the one or more invis-

social networking status, and the ghost user’s chain of com-

mand relationship with other users having access to the entity.

10. A system for maintaining anonymity in a social net-

working system implemented using a database system, the
system comprising:

database system software stored on a non-transitory data

storage medium for execution by one or more servers of

the database system, the database system software oper-

ating to cause:

designating, using the database system, a first user of the
social networking system as a ghost user with respect
to an entity in the social networking system, the ghost
user having access to feeds associated with the entity

10

20

25

52

and the ghost user having an invisibility to other users
of the social networking system;

determining, based on a seniority level of the ghost user
in an organizational hierarchy of people of an organi-
zation, one or more invisibility levels for defining the
invisibility of the ghost user to the other users;

generating data indicating content to be displayed in
accordance with the one or more invisibility levels of
the ghost user; and

providing the generated data to a display device to dis-
play a first presentation of a feed of the feeds associ-
ated with the entity in a user interface associated with
a second user, the first presentation concealing one or
more of the identity of the ghost user or feed content
associated with the ghost user according to the deter-
mined one or more invisibility levels.

11. The system of claim 10, the database system software
further operating to cause:
updating a database maintaining identifications of users

and corresponding invisibility levels to store the deter-
mined invisibility levels.

12. The system of claim 10, the database system software
further operating to cause:
providing an opportunity for the ghost user to publish feed

content to the feeds.

#* #* #* #* #*

